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RESEARCH IN ADAPTIVE BEAMFORMING FOR SATELLITE COMMUNICATIONS

1. INTRODUCTION

Reported below are the results of a study carried out in the in-
terval, November 1, 1981 - October 31, 1982 on adaptive beamforming and
interference cancelling in large sparse satellite-borne arrays. The
application in mind is the uplink of a communication satellite using
beam-switching to ground users who may be close to potential interferers.
In an earlier exploratory study, [l], the use of large sparse arrays was
examined, giving their anticipated benefits and describing their problems.
In brief, the array size is made large to put potential interferer on the
quiescent pattern sidelobes where they can be suppressed effectively; it is
made sparse to keep system complexity within bounds. Large size is us-
ually attended by element position uncertainty so that forming accurate
steering vectors toward desired sources becomes a problem; both, beam
placement error and random error in forming the pointing vector phasors
were anticipated. A processing system configuration, including alternative
processing schemes was, nevertheless, found and this became the focus
of the study reported here.

In section (2) below we present a technical summary of the study and
its results. Detailed reports on which this summary is based are given in
the Appendices of this document. Section 3 contains the conclusions and

recommendations for further study.

2. TECHNICAL SUMMARY
2.1 Hybrid Array Analyses
The principal part of our work dealt with the properties of

an array processing scheme which we term the "Hybrid Array". It is a
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composite of the Howells-Applebaum processor which utilizes known direction
of signal arrival, and the Widrow~Compton processor which uses a reference
signal extracted from the incoming field through i§s known superimposed
spread-spectrum code. This concept was arrived at by first supposing that
rapid beam switching is achieved with a processor that utilizes pointing
vector injection, then, recognizing that such arrays are highly sensitive
to pointing vector errors, ways were sought to overcome the effect of
such errors. The addition of a self-generating reference circuit which
makes use of known signal structure, was conjectured to be one such way.
An alternative scheme which bootstraps a pointing correction was also
conceived, but remains to be analyzed. Analyses and simulations of the
Hybrid Array were carried to determine its steady state and transient
properties, and the improvement it provides when subjected to pointing
error. The latter includes error in orienting the main beam toward the
desired source, and independent phase errors in the pointing vector tend-
ing to defocus the main beam.

2.1.1 Steady State Behavior of Hybrid Array

Appendix A gives the results of the steady state analysis with the
array processor shown in Figure 1, and the principal result shown in
Figure 2. The latter shows the effect on the output signal to noise ratio
(SNR) of adding the reference generating circuit toan Applebaum array
in which the steering vector may be pointed off target. p is a measure of
perfection of the reference generating circuit and ¢ is a measure of the
pointing error. The loss in SNR with pointing error, and the decreasing
sensitivity to pointing error as the reference generator approaches the
ideal, is evident from these curves. With p=1, meaning that the reference
generator perfectly matches the desired signal output so that the residue

¢ (see Figure 1) contains no signal, the effect of pointing error is
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essentially the same as it would be in a focused nonadaptive array. The
Applebaum Array which is a limiting case of the hybrid array with the
lowest value of o is therefore poorer than the Hybrid Array for any
pointing error.

Figures 4 through 8 of Appendix A show the results of computations
carried out with a 7 element array comprised of non-uniformly spaced
elements for a wide variety of conditions. The parameter Fs represents
the amplitude and phase of the reference relative to the signal component
entering the reference generator;rs-l i{s ideal. Typically, one might
expect the reference amplitude to be a few percent away from ideal and
several degrees off in phase. For such departures from ideal the curves
all show a substantial reduction of sensitivity to pointing error over
the Applebaum Array (the FS-O case). It should be noted that cases of
multiple interferers and interference inside the main lobe of the quies-
cent array are included in these results.

The observed behavior can be explained by examining the analytical
results. Without reference, the array processor treats the desired sicgnal
as interference when pointing is inaccurate. With perfect reference, the
mechanism which marks the incoming signals for suppression (the co-
variance matrix of the array element outputs, less a constant times
the covariance matrix of the desired éignal alone) has the signal component
removed by the action of the reference. As a consequence there is no
tendency to suppress it when there is pointing error, though there is the
normal loss that one would encounter in a miss-aimed conventional beam-
forming array. With imperfect reference, some vestige of signal remains

in the suppression mechanism. The tendency to suppression is blunted but




not totally eliminated. The conclusion to be'drawn form these results is
that the Hybrid Array is a significant improvemeﬁt over the directionally
constrained array though it may fall short of ultimate perfection as it
stands.

2.1.2 Transient Behavior of Hybrid Array

The results of analysis and simulation of the transient behavior of
the Hybrid Array are given in Appendix B. Because there are two filters in
the Hybrid Array, one in the sidelobe canceller weight setting loop and
one in the reference generator, two coupled set of differential equations
result. Both filters are assumed to be of first order in this analysis.
By assuming that the weiyxi.t setting loop is much slower than the re-
ference generator, one set of equations can be solved without involving
the other. The result is that a single set of first order linear differ-
ential equations with time variable coefficients 1is obtained for the
time variable weights in the sidelobe canceller. Explicit solution of
the ocutput transient SINR for an N-element array remains to be
carried out. We have however dealt more completely with the two-element
array. The instantaneous values of the single complex weight was obtained
in this case. From this, one can with some calculation determine the
response as a function of time.

Simulations were carried out on the two-element array with 1/2 spacing
assuming a signal and one interferer present. Results were obtained with
and without noise. The signal was taken to be modulated with a spread
spectrum code and the interference was taken to be a pure sinusoid. The
array processor was assumed perfectly synchronized to the spectrum spreading

code so that the transient behavior observed concerns only the response of




the weight setting loop and the reference generator. Runs were made
with various sets of parameter: values, input amplitudes, and pointing
angles. Parameter values could be found with which convergence of the
signal to interference (and noise, where applicable) ratio occurs in

a fraction of the bit interval provided the pointing angle is not greatly
in error. We found, for instance, that pointing errors up to 5o could be
tolerated but with a 20° error convergence was slowed to the point where
the output signal to interference ratio never reaches an adequate level.

In our simulations idealized signal pulses are used with zero rise
time. Clearly the filter in the reference generator will not follow such
an input so that at the beginning of each signal polarity reversal a sub-

Z stantial difference exists between signal input and output of the reference
generator. This reflects itself as a sudden drop in signal to interference
ratio of the array output. The processor overcomes this effect in less

i than half the pulse interval in the examples simulated, but this effect

i will reduce the receiver output quality. The loss can be overcome by an

increase in transmitted power of the order of 3dB. Or, the weight obtained

at the end of the first signal interval can be frozen for the duration of

é the transmission. The latter approach may, however, not be acceptable in

the case of blinking interferers where nulls may have to be moved during

the brief interval of a users on-time.

As a check on the analytical work, comparisons were made between the
transient weight variation obtained by analysis and by simulation. The

* results matched very well suggesting that certain approximations used in

the analysis are valid.
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2.1.3 Effect of Random Errors in Pointing Vector on Steady State
Behavior

In Appendix C an analysis 1s reported on the effect of random phase
and amplitude errors on the steady state signal to interference plus noise
ratio of the Hybrid Array. The analysis reported previously [1] on the
effect of pointing error was concerned with correlated deviations in the
phases of the pointing vector components which result in a shift of the
direction of focus. This sort of error will occur where there is un-
certainty in the signal arrival direction. For the case treated now the
direction of arrival is assumed known correctly but the amplitudes and
phases of the components of the pointing vector generated by the processor
are assumed squect to independent errors. Such errors may be a consequence
of circuit inadequacies, quantization errors when digital processing is done,
and element position uncertainties. In section 2.2 below we will discuss
an analysis of a method for estimating the pointing vector by calibrating
to a pilot station then steering to the desired ground user. It is
inevitable that this estimation procedure, like any other such procedure,
is less than perfect and the principal point of that study is to find the
error in the pointing phases so determined.

Results were obtained from which the SINR as a function of phase
and amplitude standard deviations can be obtained; the reference generator
quality parameter, Fs’ and the number of elements, N, are principal para-
meters in the results. The analysis was carried out for a version of
the Hybrid Array derived from a variant of the Applebaum Array in which
the signal output magnitude is not constrained (See Figure 2 of Appendix
C for this version; the version based on the constrained Applebaum

Array is shown in Figure 1 of Appendix C.). Calculations were carried out




for the ratio of mean signal power output to mean noise power output
- (i.e., interference was not included) as a function of the standard
deviation of amplitude and phase for arrays of 7, 30, and 100 elements
and for values of Fs ranging from 1 (perfect reference) to 0 (no re-
ference, identical to Applebaum Array). The results shown in Figures
3-8 of Appendix C were similar to those obtained for the case of error
in pointing.

With no reference the loss of SNR is substantial and with perfect

reference the loss is zero. With reference within 5% in amplitude and

10° in phase the loss is generally small enough to be acceptable in the

case of the 7 element array. Of great interest, though, is the effect

of increasing the number of array elements. The sensi:ivity to the

random errors increases with increases in number of array elements. In
particular, in the case of a 30 element array, the loss is substantial
unless the reference generator is close to perfect, or the errors in

phase and amplitude are very small. We point out though that the im-
provement over the Applebaum Array is great in all cases of random pointing
error.

Because the analysis was carried out for the unconstrained version
of the Hybrid array (as shown in Figure 2 of Appendix C) we compared
calculated results for SNR of the 7 element array for unconstrained and
constrained versions (the latter as in Figure 1 of Appendix C). The
differences were found to be only slight so that we are inclined to view
the other results obtained as being approximately applicable to both

arrays.
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2.2 Pointing Vector Estimation
We examined a method for estimating the pointing vector to
a desired source when interferers may be close to the desired source and
the array element positions are not perfectly known. The procedure is
based on the beamforming and scanning processes. The analysis of the

method appears in Appendix D, below.

First, the array generates a pointing vector at the reference beacon
by the use of a reflector antenna. The assumption is made that interferers
are seen by this antenna only through its sidelobes and that sidelobe
levels are reasonably low. The pointing vector is determined by correlating
array outputs with the output of the reflector antenna. The vector obtained
in this way has a bias caused by some residual interference at the reflector
antenna output correlating with the interference at array element outputs,
There is also a random component which is averaged out if the integration
time is long enough. Analysis shows that both of these errors can be
treated as random phase errors. For integration time long enough, the
standard deviation of those random phase errors is about S:ﬁth.4 radian if
there is one interferer with the same power as the beacon source and if

the sidelobe reduction is 30dB.

The second step is to steer the array from the beacon source to the
desired ground source by using the information on angular displacement
between them and the imperfect information on array element positions. The
total error in the pointing vector aimed at a desired user is the sum of
the error in beamforming and that in steering. For a seven element 10X
Hybrid Array with FS-0.95 and SNR = 10 at input, the tolerance of element
position is about 0.44) for 1dB output SINR loss if the error in beamforming
on the beacon is 5x10-4 radian. If the error induced in steering can be
eliminated, the error of 5x10_4 radians causes a negligible loss in SINR

. (o]
for F_=0.95¢"310",




2.3 LMS Interference Canceller with Reference Generator
Appendix E contains an analysis of an LMS adaptive array

processor which utilizes a self-generated reference only; that is, one
which does not use direction of signal arrival information. An array
processor to accomplish this is described by Compton (reference {31,
Appendix E) and the problem of weight cycling encountered with this
scheme is analyzed by DiCarlo and Compton (references [4], [5], Appendix
E). We have here analyzed two variants of the Compton scheme both of
which differ from the original in that one element is left unweighted and
limiters in the reference generators are omitted. The difference between
the two schemes analyzed here resides in how the reference generator is
driven.

It is shown in Appendix E that simple and attainable conditions exist
for the weights to converge to a constant value. Also, the SNR for the
two schemes devised is obtained. In one scheme, where the reference genera-
tor is driven by the output of all array elements, the SNR turns out to be
generally low - as low in some cases as the SNR of a single element. The
other realization, in which the reference generator is driven by the out-
put of the weighted elements onlwy the output SNR is the full value ex-
pected out of (N-1) coherently combined element outputs; N is the number
of array elements.

We point out that the earlier analyses by DiCarlo and Compton and

the analysis of Appendix E were carried out without interference present.
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2.4 Effect of Interference on the Behavior of the LMS Array
with Internally Generated Reference

As pointed out in section 2.3 above the published analyses on the
subject of adaptive arrays with internally generated reference were
carried out with a single signal and independent element noise only; that
is, interference was not considered. 1In Appendix F the earlier analyses
are extended to include interferers.

The array processing scheme of DiCarlo (reference [4] Appendix F)
is assumed, along with the phase shift compensation scheme of Bar-ness
(reference [3] App2ndix F). The analytical difficulties which arise with
interference present is associated with the greater complexity of the
covariance matrix with more than one signal present. The covariance
matrix of the multiple signals is of rank equal to the number of signals.
The uncoupling of the resulting simultaneous differential equations presented
difficulty though a transformation was found which made it possible to
separate the effects of desired signal and interference.

It is here shown that the phase shift compensation is effective in
the multiple interference case and that weight cycling can be avoided. The
conditions to be satisfied though have not yet been found for the general
case. One expects the conditions and the transient behavior of the array to
be affected by the relative levels of the incoming signals and on their ar-
rival directions. It was possible however to get an explicit condition for
convergence in the case of a single interferer in addition to the desired
signal.

Further work is to be done on the conditions for convergence in multiple
interference as well as on convergence rates and achievable signal to

interference plus noise ratios.

10




3. CONCLUSIONS AND RECOMMENDATIONS
We have seen that the Hybrid array processor is a substantial

improvement in the steady state over an array using only direction of
arrival information when systematic or random errors are encountered in
the focusing phases and amplitudes. The transient analysis also suggests
that if signal structure alone is used to drive the adaption process
the response time will be greater than with the Hybrid Array. We point
out that the Hybrid Array as described here does not suffer from the
weight cycling problem associated with some processors which utilize known
signal structure to self-generate a reference. Though we have not dealt
with the problem of code aquisition time in this work it is to be noted
that the use of a pointing vector, even an approximate one, insures a
reasonably large signal component immediately from which the code
aquisition circuit can more readily extract synchronizing information.

We have analyzed a pointing vector estimation method based on the
use of a pilot source sufficiently out of the way of interferers. We
have derived the estimation errors and with the pointing error sensitivity
of the Hybrid processor, we have demonstrated feasibility of the scheme.

Finally, we have extended previous work on adaptive processing
utilizing signal structure alone to self-generate a reference. Schemes
were devised and analyzed which can be prevented from generating oscillating
weights, and the behavior of such arrays in the presence of interfering
sources has been analyzed.

The work carried out leads us to make a number of recommendations

for further study.
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While the Hybrid Array promises significant improvement over earlier
schemes it depends on being able to generate a good reference. What is
needed is either a mechanism for insuring that the self-generated reference
is near perfect or a mechanism for correcting the steering vector. A
possible circuit to accomplish this by the addition of another steering
phase correction feedback loop for a two-element configuration had been
conceived before [1]. Variants to accomplish this same end have been devised
since then. These schemes should be further pursued. It may also be
valuable to pursue methods of steering correction in one of the Applebaum
arrays - that is, with processors which do not generate a reference in-
ternally. In addition, or as an alternative, ways should be devised for
controlling the reference generator output through a feedback loop to
minimize the signal component in the residue.

The improvements obtained with the Hybrid Array can be viewed as a
consequence of utilizing more information about the desired signal than
heretofore: the general problem of how to make optimal use of other bits
of prior information is worth considering. For instance, approximate
location of interferers, or their signal structure may also be known.

There is also additional prior information regarding the desired signal
which is potentially useful - the waveforms and error control codes used,
for instance. This also leads to the question of how to design sigﬁals
which will most effectively aid the array focusing mechanism.

We had originally adopted the view that the array size to be used would
be sufficiently large to put potential interferers out of the main beam of

the quiescent array pattern.

12




We have nevertheless obtained some computational results for the Hybrid

Array assuming interferers well inside the beamwidth. Naturally, the
SINR was found to be adversely affected. There is reason to expect
that the SINR with main-beam interference is to some extent dependent
on array element layout. The problem of element layout was one of the
items considered originally by us but ruled out as a significant factor
for large arrays with no main-beam interference. Since close interfers
cannot be ruled out totally the effect of main-beam interference and
its dependence on element layout ought to be considered.

The schemes with which we have dealt are all narrowband; that is,

they utilize complex non-frequency dependent weights prior to element output

combining. As long as the time displacement of signals seen by the different

elements is small relative to the inverse of the signal bandwidth this
method is satisfactory. For broadband signals, and/or for wavefronts
arriving at angles very far off array broadside this may not be the case.
Ways of extending the methods here described to wideband signals would be
useful.

One of the principal advantages we see in arrays utilizing directional
information in addition to signal structure information is the potential
for high speed beam switching. We have verified fast convergence of
the Hybrid Array with an interferer present in a particular location.
However, the functioning of the array in a rapidly changing dynamic en-
vironment of multiple desired sources and dispersed blinking interferers
requires further attention. One can imagine a simulation experiment with
such a scenario. Also deserving attention for multiple access applications
is the use of multiple directional constraints in which two or more

simultaneous heams are focused.

13
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UP-VFRC-9-82 Appendix A

STEADY STATE BEHAVIOR OF HYBRID ARRAY

by

F. Haber, Y. Bar-ness, C. C. Yeh

Abstract

The steady state properties of an adaptive array utilizing prior know-
ledge of both approximate signal arrival direction and signal characteris-
tics are here presented. The method combines the features of a directionally
constrained array and one with a self-generated reference signal. Explicit
results are obtained for output signal, interference, and noise powers
assuming a single interferer is present. The inclusion of a self-generated
reference circuit is shown to reduce the sensitivity to pointing error typical
of arrays utilizing a zero order directional constraint, the improvement being
a consequence of the reduction of the desired signal component fed back to the
sidelobe cancelling circuit. A relationship between the degree of sensi-
tivity reduction and the quality of the reference signal is developed.

Results of computations of signal to interference plus noise ratios for a

7-element 10 wavelength non-uniformly spaced array as a function of pointing
error are presented. These results show the behavior with one interferer

inside and outside the beamwidth of the quiescent array, and with multiple

-

interferers, for various degrees of perfection of the reference generating

circuit. 1In all cases the computations confirm that the otherwise severe

e

effects of small pointing errors are substantially reduced.

This research is supported by Rome Air Development Center under Contract
No. F30602-81-K-0211.
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UP-VFRC-9-82

INTRODUCTION

Adaptive arrays suitable for use in communication systems can be
categorized according to the prior information utilized to distinguish
desired from undesired signals. One scheme described by Applebaum and
Chapman [l] is suited to point-to-point communication where direction of
signal arrival is known; the directional information, through an input
steering vector, constrains the array gain in this direction, maximally
rejecting other, unwanted sources.* Another scheme, based on a concept
by Widrow, et. al. [2] recognizes the desired signal via an externally
supplied reference. For communication use, an extension of the latter
was made by Compton, et. al. [3, 4] wherein the reference is internally
generated utilizing some prior known signal structure information
(e.g., the spread spectrum code superimposed on the signal).

One of the principal shortcomings of the first method, the directionally
constrained method, is that small pointing errors result in large losses
in the output signal to interference plus noise ratio (SINR). An analysis
of this effect was made by Compton [5] and was reinforced by results obtained
by us [6]. Unfortunately, pointing error is endemic in many applications
where direction of arrival is ostensibly known. The second method is
however not free of difficulties among which are problems relating
to imperfect reference generation [7, 8]. Furthermore, one expects better
transient response using the directionally constrained scheme because
a substantial signal power becomes immediately available at the array output

on injection of an approximately correct steering vector.

* Yyith a constraint on the gain in a chosen direction the array is said to
be zero order directionally constrained [1].

A-3




A comparison study of these two methods [9] suggested that the two
can be made to complement one another and has led us to look at hybrid

schemes which take advantage of both kinds of prior information--

directionality and signal structure. We present below analyses and
computational results of the steady state properties of one such scheme

as defined in Figure 1. The array processor is represented in a form
similar to that in Applebaum and Chapman {1, Figures 2 and 4] with the
addition of a reference generating loop. We treat the case of narrow-

band information bearing signals for both desired and undesired arrivals

so that steering ana nulling operations are carried out by control of
amplitudes and phases of s and y respectively, at band center. Further-
more, we assume the reference generating circuit is operating in the
synchronous mode with respect to the desired signal; the acquisition circuit

for code timing is therefore not shown.
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2. ANALYSIS
The array system under consideration is shown in Figure 1. Output

signals from the array elements are represented by the complex vector

J

v(t) =a(t)sy + ] 8

L + n(t) 1)
j-

(t:)gIj

where 8, is the arrival phase vector of the desired signal comprised of N unit

= |

amplitude components, o (t) is its complex envelope; s is the arrival phase

I3

vector of the jsh interference signal, B, (t) is its complex envelope;

3

and n(t) is the complex noise envelope vector, the components of which

are assumed independent. 1If, for instance, the elements are arranged

along the x-axis at positions Xy i=1,2,...N, a desired signal arriving

as a plane wave with its plane of arrival at an angle 6, relative to the

d

x-axis induces signal components
a(t)sdi = a(t)exp(kaicosed), i=1,2,...N (2)

in the array elements. sdi = exp(jkxicosed) is the iEh-unit amplitude component

of sy The rf wave at the i—t-l'—l element is given by vi(t)exp(jwt + ¢). The de-

sired signal component at the ith element, as represented by (2), has the
carrier exponential suppressed.

The beamformer defined by the steering vector, s* in Figure 1 generates an

output given by the inner product of s* and v given by (1); that is,
e =8 v (3)

(the time variable in e and v is omitted but implied). The output of the
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system is given by

e, = e, -Yu (4)

where y is the weight vector on the sidelobe canceller and

u = Av (5)

A is an (N - 1) x N matrix of rank (N - 1) chosen such that As = 0; and, as a
consequence, such that signals arriving with direction vector s do not con-

tribute to u. (3), (4), and (5) together give

€0 = R N SR (6)

Following Applebaum and Chapman [1] the equivalent weight vector w is defined by

e, = g?! 7

so that from (6)

w= gk - ATy (8)
Because of the way A is chosen this weight vector w insures the response in
the direction of s. That is, premultiplying (8) by g? we have

sTw=s"s" - s"aTy = ¥ (9)




*

In (9) we have used g?ATX - X?AE = 0, and g?g = N, the number of elements.
The weight vector of the sidelobe canceller is formed via a circuit

which typically approximates the LMS algorithm using steepest descent

search. In the steady state that weight vector 1is given by
= * -
Yy=guk(e -e)

where e, is the reference signal as identified in Figure 1 and g is the
gain in the weight setting loop. The overbar stands for expected value.
The reference signal is assumed formed from the array output e, by
despreading using the desired signal's spread spectrum code, filtering,
and respreading using the same code. In the process, interferers in
whatever form they initially appear (i.e., wideband or narrowband) are
reduced to a broadband low power spectral density noise. e is therefore
viewed as being comprised of a component closely similar to the desired

signal and a noise component, denoted no; that is,

where eod is the signal component of eo and FS is an operator representing

the effect of the bandpass filter on the desired output signal component.

We will specialize it in our work to a complex constant implying a phase

and amplitude shift only.

(10)

(11)




Utilizing these preliminaries, the equivalent weight vector from which
the ocutput response is determined by (7), is shown in Appendix A to be given

by (see A-12, A-13),

-1 *
W= UM s (12)
where
2
M = M- [a] Fo My (13)
and
T (14)
T,-1
s Ml s

M and Md are defined by (15) and (16) below. When Fs=0 the hybrid array re-
duces to the conventional directionally constrained array and the weight
-1 *

s .

vector as given by (12) reduces to w = uM
We now examine the implications of the change brought about by inclusion
of the reference generating circuit. From (1) we write for the covariance

matrix of the inputs

* T 2 .
= = 153
M=vyv [a lMd + § lleMIj + M (15
where = * T I
M4 = 5484 s
* T

= b
and Mij = 21358y (17)

*
M =n'nl = 0’1 (1)

n —_—— n

(15) is obtained using the assumed independence of all separately arriving
signals desired, undesired and noise) and the independence among the noise
components. With Ml as given by (13) we see that the effect of the self-
generated reference signal is to alter the contribution of the desired signal

component to the covariance matrix by a factor (l-FS). When Fs = 1, M, has,

1
in fact, no component due to signal. We point out that the field

environment iIs communicated to the array processor via the matrix




M in the conventional directionally constrained array. The tendency of

the array processor is to suppress all signals recorded in the matrix M--
except for the signal coming from the constraint direction defined by the
steering vector s. If s is different from the direction of the desired

signal represented by 84 the processor deals with it as if it were an unwanted
signal, suppressing it substantially even for small differences of angle.

The effect of removing the desired signal contribution to M, or of reducing
its influence on M by making Fs close to unity, is to reduce the tendency

to suppression of the desired signal when s and 8,4 are not coincident. This

may be seen most easily by imagining only a single signal present with

arrival direction inherent in Ed and with Fs = 1. Then

M =M = UZI
1 n n

and the weight vector is from (22)

*
w=s (19)
The weight vector is identically that of a conventional beamformer and the

desired signal will produce an output

Te*s (20
eo(sig) 548 ¢ )

The pattern of eo(sig) as a function of angular difference between pointing

vectors s, and s will have the usual mainbeam beamwidth of approximately A/%

where & is the linear dimension of the array. Ve later show computational

results bearing out this effect.




We now return to (12) for the purpose of putting it into a more explicit
form in terms of the signal, interference, and noise components. The result
will allow us to draw additional conclusions about the array behavior including
the effect of imperfect elimination of the signal component from M. Using (13)
and (15) we have, assuming a single interferer denoted B(t)gI,

2 2 2
M o= (1 -Fs)lu IMd+ |8 IMI+0nI

2
=0 [(1 - Fv My + vyl + I} (21)
_1.27,2 2,2
where Yq = ]a l/cn measures the SNR of the desired signal and Yi*® 18 |/crn

measures the SNR of the undesired signal at each element. It is shown in

Appendix B that the inverse of (21) is given by

- i,

L, R MM Ay (R (AR v DIy
2 <
o [(L-F )y 1] (r 1) (1=F v vy lsgsy |

To see the effect of imperfect reference generation we specialize (22) to the

case of desired signal plus noise alone so that y; = 0. Then (22) becomes

i 7
~ | (1-FHvM
e Ly | 1 - | @)
o s’ d |
. J
The weight vector is then, using (12),
- K *_ *
w= (5= kMs ] (24
%n
A-10




where

(T - F vy

k, = (25)
1 1 - Fs)de +1

The output signal to noise ratio is

T, * * 12
Ellas (s - kMys )]

SNR = T -
E(|n’(s" - k M;s )%
2%}
T, * £ 2
v |§d(§ - klMdf'. )l
= Y4, * * 2
s - xkMsl
”']l represents the norm of the vector inside the bars.
*
Making use of (16) and of the fact that §§§d = N the numerator of the
ratio in (26) becomes
2, T *,2
ll - klNI lgdi l
and the denominator of that ratio becomes
2 T *,2,.2
N1+ (|1 - k) N|%- 1)[s s [7/N7]
so that (26) can be written
*
1 - in|?]sis”)
SNR = (27)

NL+ (1 - kn|? - D sis" 2/

This result embodies both the degree of imperfect pointing and imperfect

reference. For the case where the reference generator is perfect kl =0

so that

A-11
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The maximum of this quantity is obtained when pointing at gd and in this
T %,2 T *y2 - 2
case ls’s | l—dgd[ N~ so that
SNR = My (29
an expected result.
For the case where 84 = 5 but with imperfect reference (27) also gives
SNR = NYd
just as one would expect from perfect steering.
*
The pointing error is embodied in the quantity lizi |2 which, as stated
above, has a maximum value given by Nz when 84 = 8- A convenient indicator
of pointing error is obtained by writing
T %2 _ 2 10
lsye 19 = @@ - )N (30)
with 0 < ¢ < 1 being the measure of pointing error. Using (30) and, for
brevity, denoting
1 - kn|? - L == 0 (31)
(1= F v N+ 1
where kl is given by (25), (27) becomes
-y N—L =€) 32
SNR = v Nl T e)o] 32)

A-12




The right factor in brackets which we might term the normalized SNR shows
how the SNR varies with pointing error as measured by e, for degrees
of imperfection in the reference signal as measured by p. We show in

Figure 2 the behavior of that factor denoted by

a—(=e)p 3
e+ (1 - €)p (3%

for p in the range (0.01, 1). The larger values of p represent closer
tracking by the reference generator and vice-versa. We see here clearly
the increasing sensitivity to pointing error as p gets smaller. 1If, for
instance, Fs = 0.9, N = 10, 94" 10 we get o0 = 10-2. It should be noted
that with Fs = 0, i.e. when no reference is used, the corresponding value of
p is about 10-4 implying greater pointing error sensitivity than for any of
the cases shown in Fig. 2. These results are further confirmed in Section
3 where computations are carried out in the presence of both noise and in-
terference.

For further insight into the behavior of the hybrid processor we ex-
amine the output signal to interference plus noise ratio (SINR) with an

interferer present. We will, however, now assume a perfect reference; i.e.,

Fs = 1. The inverse covariance matrix given by (22) now becomes

M
-1 _ 1 11
M =7 - s D (34)
o I
n
and the weight vector is now
-1 %

M 4 g® - kM s
wo=uMys °2<§-213)
n
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where
k = —YI——
2 YIN +1 (35)
Output signal (So), interference (Io), and noise (NO) are obtained by
premultiplying (34) by asT, Bgz, and g?, respectively. The output SINR
is defined by
2
E(|s] )
SINR = 3 7 (36)
E(IIO\) + E(INol )
The signal output power is
2 w2 T Te* - kstersts |2
E(\So\) = 'z"a \‘idi - k,84818:2
n
2,2 * * *T
T %*,2 T T
- L.Ls"__l{lgdg - 2kyRels "sy) (87 84) (84 8] @3N
°n
2, *T *T 2
+ Kyl (s 8p) (8 Ed)‘ }
If pointing is accurate so that s = S4 (37) becomes
I 2| - \Jz 0.2 NZ KN *T ‘2 + k2|s*T llo)
E( So ) A ( - 2" |_5d 8y 2129 Sy (38)
0'“
The noise output power is
2 uz T,6 * * T % 12
E(IN %) = 55 Eln' (s - kp8y848 )|
%
39)
S8 - @k, - el
52 -2 PRI o
n
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and the interference output power is

2 —

2 2 T * T * T *,2
E((Iol ) = 'La' (8 HEIE = kzililglﬂ l (40)
n
' 18] @ - kN sTs™|?
x 2 1812
n

Note from (35) if the interference to noise ratio Yy and/or the number of
elements N is large enough to make YIN >> 1, k2 approaches 1/N. The output
interference power as given by (40) is, in this case, strongly suppressed
through the factor (1 - kzN).

With accurate pointing (39) and (40) as well as (38) involve the quantity
12

*
|§dT§I , the inner product of the desired and undesired signal pointing

vectors. If, for instance, the array elements were strung out along the x-axis

with positions xi,

2
N jkxi(coseI - cosed)

*s lz = e (41)

l2g 2y

i=1

where 6_ and 6

I q are the undesired and desired signal arrival angles relative

to array broadside and k is the wavenumber (=2w/1). For a thinned array with

the element positions Xy far apart in units of wavelength and with eI
sufficiently different from 84> the sum in (41) is the vector sum of N arbitrarily
oriented unit length phasors. With N large enough the squared length tends

to be close to N.

* -
If we take IE: §I|2 = N and also take k, to be N 1 we get from (38)
2y, _ pile?] 2 ulla?| 2
E(ISOI) = 7 (N - 2N+ 1) = A (N - 1) 42)
c o
n n
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If kz had been zero, meaning therq were no interference to suppress,
the factor (N - 1)2 in (42) would be replaced by Nz. As typically
found, the suppression process causes a reduction in signal output
power equal to that of a loss of one element.

Under the same assumptions, the noise output power is from (39)

2 u2
E(IN|%) =35 (N - 1)
c
n
Taking the view that the interference is totally suppressed, the output

SINR is the same as the output SNR which is, using (42) and (43)

2
SNR = SINR=J-°iZ—|-(N-1)

(¢
n

(43)

(44)

More generally, the output SINR is given by substituting (37), (39), and (40)

into (36).
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3. COMPUTATIONAL RESULTS

Based on the results of Section 2, above, calculations of the steady-
state output signal-to-interference plus noise ratio (SINR) were carried
out assuming a linear array exposed to a desired signal and one or more

undesired signals. The equivalent weight vector defined by (7) is given by

w=ul@ - F)lalln, + glsﬂun +u 171" 45)

(45) which is a composite of (12), (13), and (15), was used to

calculate the equivalent weights and the corresponding mean square signal,
noise, and interference outputs.

Figure 3(a) shows the the linear array element layout used for most
of the computations. Seven elements were placed non-uniformlv over am interval
of 10 wavelenghts and a desired signal was assumed to be arriving broadside
to the array. Computations of SINR were made for various deployments of
interferers at various power levels relative to noise and signal. Since the
behavior of a sparse array with arbitrarily selected element positions can be
expected to depend on the particular realization of those positions, a second
element layout as shown in Figure 3(b) was used to repeat a number of these
computations. A sampling of gLe results obtained is presented below.

Of particular interest are the results shown in Figure 4 for the case of
a desired signal arriving broadside to the array (ed = 90°) and a single
interferer arriving 5° 9ff broadside. Signal, interference, and noise power
are respectively 10 dB, 10dB, and O dB. The SINR versus pointing angle
is shown for the case of an array with directional constraint only (the
Applebaum-Chapman case) and for the hybrid array with varying degrees of
perfection in the self-generated reference, i.e., with various Fs. With an

ideal reference, i.e., Fs = ], we see very little sensitivity to pointing
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error (pointing error is pointing angle-90°), while with a directional
constraint only, the pointing error sensitivity is extremely high. As

the reference generating loop tends toward the ideal, the sensitivity
decreases with reasonably tolerable levels achieved (3 dB loss in SINR for
0.5° pointing error) with moderate residual reference loop attenuation (5%)

and phase shift (10°). Results not substantially dissimilar were obtained

with the interference level raised to 20 dB with the alternative deployment
of the array elements.

The interferer used to generate Figure 4 being 5° off broadside is
outside the beamwidth of the quiescent array. By quiescent array we mean
the array with adaption circuits inactive. In Figure 1 the quiescent output
is e The terms "beamwidth" and "mainbeam" will be used only
in connection with the quiescent array. The behavior of the hybrid array
with mainbeam interference is of interest and results of computations illustrat-
ing its properties under such a conditionare shown in Figure 5. A single
interferer is assumed 1° off broadside with all other conditions identical
to those used to generate Figure 4., Interestingly, the sensitivity to pointing
error of the array with directional constraint only, Figure 5(c¢), is not as
severe as for the corresponding case of Figure 4 with the interferer off the
mainbeam. The SINR in Figure 5 with correct pointing to the broadside signal
is however about 8 dB less than for the case of interference off the mainbeam.
This confirms a result obtained by Bar-Ness [9] in a comparison study of the
two array processing methods which have been fused here into the Hybrid Array;
the directionally constrained array is strongly affected by mainbeam inter-
ference. Figures 5(a) - 5(c) show the behavior of the Hybrid Array with ideal
and non-ideal reference loop. The progressive increase in pointing error

sensitivity is evident as the reference loop moves away from the ideal. The
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SINR with correct pointing is seen however to be unchanged from that of the
pure directionally constrained case. Sensitivity to interference level 1in
the case of mainbeam interference is however more evident than in the case
of off-mainbeam interference. In Figures 6 and 7 are shown results of com-
putations with interference level of 20 dB and O dB relative to the noise
level and with all other conditions identical to those of Figure 5. With
20 dB interference to noise ratio, Figure 6, the SINR with perfect pointing
is slightly below (about 0.3 dB) that obtained with a 10 dB ratio. With

0 dB interference to noise ratio, Figure 7, the SINR with perfect pointing
is above (about 2 dB) that obtained with a 10 dB ratio.

It should be noted that the dips in the SINR curves, Figures 5-7, do

not occur at values of pointing angle equal to the respective interference

arrival angles. Rather, as the level of interference is raised relative to
that of the desired signal level the dip moves from a value somewhat above

88° to a value close to 89°, the actual interference arrival angle. This
behavior appears to be a consequence of desired signal reduction induced by
the interference and the effect of element noise. It should be noted that the
multiple sidelobe canceller output, E?X.i“ Figure 1, contains both signal and
interference when pointing at an angle below 89°. Because signal and inter-
ference are angularly close to one another the output g?x which acts to cancel
interference when pointing below 89° tends also to cancel signal. The signal
and interference powers in the numerator and denominator, respectively, of the
SINR both decrease. Because, for Figure 7, input inierference and noise are
taken to be of equal power, the output interference, being partly suppressed
when pointing away from 89°, loses its effect on the SINR. The net SINR

will therefore continue to decrease as the pointing angle moves further

below 89°. The minimum actually observed occurs when the pointing angle
becomes such that the cancelling effect of gﬁx on the desired signal goes
through a maximum. When the undesired signal is large as in Figure 6 the
SINR immediately below 89° 1s largely determined by signal and iﬁterference -
not noise. Here, as the pointing angle moves below 89°, though both

signal and interference may be decreasing, their ratio 1is increasing.
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4. CONCLUSION

The Hybrid array processor analyzed here utilizes prior information
on expected direction of signal arrival and on signal structure. It is a
fusion of techniques using a directional constraint and a self-generated
reference signal. It was here shown that the sensitivity to pointing
error typical of (zero order) directionally constrained adaptive arrays
is substantially reduced, the degree of reduction depending on the self-
generating reference circuit. When the latter has unit gain and zero
phase-shift the sensitivity is all but eliminated. With modest departures
from these conditions there is still a significant improvement. In the
particular case of a 10 wavelength linear array comprised of 7 non-uniformly
spaced elements with a desired signal arriving broadside to the array and an
interferer 5° off broadside, the output SINR falls off about 20 dB for a
pointing error of 1/2° when no reference is used. On the other hand, with
a reference generating circuit which tracks the amplitude of the desired
signal within 5% and without phase shift the SINR is off by about 3 dB; with
amplitude 5% off and a phase shift of 10° the SINR is off by about 8 dB. Im-
provements in sensitivity to pointing error are also observed when the inter-
ference is within the beamwidth of the quiescent array. However, such inter-
ference is observed to blunt the effect of pointing error even when no re-

ference is used. The improvement with reference is therefore less dramatic

in this case.

We have alluded to the advantage expected in transient response of this
scheme over one which does not utilize the directional information. This

is subject of another analysis and will be reported separately.
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APPENDIX Al - EQUIVALENT WEIGHT VECTOR

We here extend the result obtained by Applebaum and Chapman [l] for a
directionally constrained array, to the case of the Hybrid Array represented

in Figure 1.

*
Using (3), (4) and (10) in the main text and writing u = Av we have

*
y=gAy "y -y - e) (A1-1)

R kT * *
=glaAMs -AMAYy -~Avel]

where M is the covariance matrix of inputs: that is

*
M=yy

and it is positive definite (independent noise voltages are always assumed at the

array elements).

*
To evaluate v e (1) 1is rewritten

v(t) = a(t)s, + q(r)

with q(t) representing all interference and noise components. Then using

(6), replacing v with the signal part above we get

ed - a(s -y A)§d (Al-2)
From (11)
*T T
= -yv'A +
e T Fr(s my Mgy e (A1-3)
so that

*Equations (n the mawn text wit hencefetth be wecalled without {urthen
comment,
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* * * *
ve = (a 5; +4q )[F§“(£ T _ z.TA)gd + nr] (A1-4)

= lol%, u,s" - ATy

where

My = 548 (AL-5)

is the covariance matrix corresponding to the desired sienal direction vector and

where we have assumed that g, n_ and the desired signal are all uncorrelated.
(Since n. arises from q some dependence is apt to exist; it is here assumed

negligible). Substituting (Al-4) into (Al-1) we get

y = 8laMs” - ATy - [o?F A" 8" - ATy (A1-6)

= et - [Z[FM1" - ATy

Premultiplying by AT and using (8) we get

s - w= gATAN M - [a?]F My lu (AL-7)

This result, from which the weight vector w can be obtained is in a form

similar to that in Applebaum and Chapman [1, eq. (4)], the latter being

obtained from (Al-7) with Fs = 0,

For the case g »> 1 we can also get from (Al-6)}
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A"t - [a?|F e > 0 (A1-8)

Since As = 0, meaning that the (N - 1) linearly independent N-dimensional

row vectors of A are orthogonal to s, the solution to (A1-8) must satisfy

M- |02|F8Md]3 = ug*

or

1 *

- _ 142 - -
w = u[M la IFst] s (A1-9)
where u is an appropriate constant. From (9) we have
-1 *
sTw = N = us"m - e |F M7 (A1-10)
so that
b= : (A1-11)
i sT[M - [«“]F.M ]-ls*
i B sd =
|
and
-1 *
-1 * NM11§
l w=uMs = —pmee (A1-12)
1 s Ml -2
i where
M, o= M- [a®|F M (A1-13)

e A

Ml can be shown to be non-singular.
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APPENDIX A2 - INVERSION OF THE COVARIANCE MATRIX

We obtain the inverse of the covariance matrix, M, of the array

element output vector as given by (1) when a single interferer denoted

g(t)s; is present. M may be written (see (15)-(18))
M= 02[1 +y M +yM]= dzM . (A2-1)
n n dd Il no

* T * T
where Md = S!si’ Mr.— EIE R In is an n by n identity matrix, and Y4 and YI

are SNR's of desired signal and interference, respectively. Md and MI

are positive semi-definite so that M is positive definite and therefore

invertible.

For any two matrices A and B of dimension (n x r) and (r x n), respectively,

if the inverse of an + AB)exists, then {10]

-1 -1
(1n + AB) ~ = In - A(Ir + BA) "B (A2-2)

Ir is an r x r identity matrix.

Eq. (A2-1) may be rewritten

N (A2-3)

and its inverse may be written
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Pl ror * |-l
T
YIS{JJIZ v Edgd Y2y 8,
. - |
T
t LEI J 21,

(A2-4)

where I2 is a 2 x 2 identity matrix. The matrix factor in the second form of

(42-4) which is to be inverted gives

l" I+ o—sT " s* s*"‘\-l
|2 24 § a2 Vi1 |
< L ~ i
T
S
l 5 _ !
- T -1
+
NYd 1 YISISI 4
= i
T ':
’ergIgd Ny + 1]
4' T *
L M+l ovsgss
Bl T +1
VeS8 Mg
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* 2
where A = (N‘Yd +1) (NYI +1) - YdYIIE:‘EII .

Mlarx 1 * * +1
) n T alVaSq  Yeep) [ Mg

T *

4 dilgd

Thus

Y%

Nyy *

*
1

(A2-5)

e d%

T
|
|

1
L= alygMyy + DMy = vy (MM + MM+ v (N + 1M

Equation (22) in the text is obtained from this result by replacing 4 by

Yd(l - Fs) and multiplying by llci to give the inverse of the effective

covariance matrix, Ml.
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List of Symbols - Appendix A

transformation matrix

taking expectation of [ ]

output of the beamformer

array output

signal component of the array output
output desired signal of a beamformer
reference signal

operator representing the effect of the bandpass filter in the
reference loop on the desired output signal component

gain in the weight setting loops

identity matrix

output interference

number of interferers

wave number

constant related to reference quality

constant related to interference to noise ratio
linear dimension of the array

covariance matrix of array element outputs 4
equivalent covariance matrix

inverse of M

covariance matrix corresponding to the desired signal direction vector
covariance matrix corresponding to the jth interferer direction vector
covariance matrix corresponding to noise

normalized covariance matrix

number of array elements

output noise
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List of Symbols - Appgndix A
(Continued)

noise component of the reference signal
complex noise envelope vector

interference and noise components of v(t)
normal output signal to noise ratio = SNR/udN
real part of { |}

steering vector

complex conjugate of s
arrival phase vector of the desired signal
the ith unit amplitude component of §d
arrival phase vector of the jth interferer
output signal

transpose of s

signal to interference plus noise ratio

signal to noise ratio

input vector of the multiple sidelobe canceller
output of the ith array element
output vector of array elements
equivalent weight vector

ith array element position
weight vector on the sidelobe canceller
desired signal waveform

power of a(t)
power of 8 (t)

th ]

j interferer waveform

signal to noise ratio at array elements

i
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List of Symbols - Appendix A
(Continued)

interference to noise ratio at array elements
determinant

measure of pointing error

arrival angle of the desired signal
interferer arrival angle

wavelength

a constant

a constant related to reference quality
noise power at array elements

carrier frequency
expectation value of ( )

norm
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Appendix B

TRANSIENT RESPONSE OF THE HYBRID ARRAY
by
Chien~Chung Yeh
1. Analysis
We examine here the transient behavior of the Hybrid array. The

circuit is that shown in Fig. 1 of Appendix A and the notation is also

that of Appendix A. The input vector is written
V(t) = a(e)sy + B(e)S, + N(t) (1)

where a(t) and B8(t) are complex envelopes of desired and undesired

signals respectively, §d and EI are their direction of arrival vectors,

and N(t) is the random noise vector.

The output of the beamformer is
* *
e (t) = V'(6)8" = 5 V()
with S being the steering vector. We also have

u(e) = A V(t) (2)

T

where A S = 0. The sidelobe canceller generates yl(t) = _?g(t) =Y A V(t)

so that
eo(t) e - yl(t)
= s - AT Ty (3)

Define

eo'(t) = e _(t)g(t) %)

where g(t) 1is the spreading code. eo‘(t) is the array output with the




desired signal despread. The output, eout(c), of the bandpass filter
assuming it to be a single pole with time constant T is given by

deout(t)

1 Tac + eout(t) = eo'(t) )

The reference signal, er(t), is obtained from eout(t) by respreading

using the code g(t);
e (t) = e . (£)g(t)
The residue feedback is
ee(t) = e (£)-e (t)
= 18" ATV - e, (D8(0) 6)

For the weight control loop, we have

dy(t)
T2 T4t

+Y(t) = G e(t) U (e) 7

Substituting (3) and (4) into (5), we get

deout(t)

R ye (0 = (s - ATL®1 Vo) )

We examine the transient response by assuming that the signal component in

V(t) is a step function. Let

a(t) = ag(t), t 20

0 t <O

The foregoing may be viewed as the waveform seen with the first informa-

tion digit received; the amplitude is o and the signal is modulated by




the spreading code g(t). Taking expectations on both sides of (8),

deout(t)

T1 T4t

— *
+e () = I8 - aTY(®1 V(o)g(e) 9)

It is reasonable to assume that the interference and noise are
independent of the spreading code. Also in an adaptive array, the weights
generally vary much more slowly than the input, i.e. the control 1loop
bandwidth is much smaller than the bandwidth of V(t). See e.g. {1], where
a similar argument is used on the independence of weight fluctuation and
input. We therefore assume that to an adequate approximation the weights

may be treated as being independent of V(t). (9) then becomes

e (t) - *  T— —
T 2 T (0 = (87T () TOE®
- (8"-A"2(0)17 as, (10)
Next, substituting (2) and (6) into (7), we have
dy(t) *
T, T + X_(t) = Ge(t)V (¢)
= 6{1s"-AT ()1 V(D) -e_ , (©)a(t) A"V (©)
= st (v (O 1s"AT (0 14"V (D g(t)e_ (1)) an
Taking expectations on both sides of (11) and using the same assumptions
on independence we get
() _ . L
t, o— *+ ¥(®) = 4"V ()3 () 1s"-aTE(e)]
* &
- AV (t)g(t)e  (t)} 12)




Since eout(t) is the output of a narrowband L.P.F. or B: P. F., as com-

pared to the spreading code chip rate, it should be admissible to treat

it as approximately independent of the product of V(t) and g(t). That is,
*

(t) = as, + N, (t) with

the fluctuation components N, (t) and N,(t) essentially independent. Thus

* *
we can assume V (t)g(t) = u§d +_§1(t) and € ut
(12) becomes

dy(e'

ty o= + (e) = oA nis"-a"L(0)]

x _* -—
- A V(t)g(e) - e ()

- cta"uis"-a"E(0)] - aas"e (o)) 13)

where

M= v eV (e)

2. % T 2. % T 2
0’5y 5, + 88 8y +o, T 1e)

with

6% - Iaz(t)l

8% = 1820

*
o 21 = N (N (0)
{(13) can be arranged as

dy(t)

1 + ca"malyy cla™Ms*- a%as e ¢ 15
" 3t ( MAT)Y(t) + GIAMS - AaS; e . (0)] (15)

(10) and (15) are coupled sets of linear equations which are to be solved.
As they stand they are tedious to solve. However with the following

approximation a manageable result is obtained. Assume that 71, 1is small.

1

.




T, is large and G is moderate so that E;ut(t) varies much faster than
i(t). Then in (10) we may treat z(t) as a constant and get the solution

of eout(t) as

t
- *  To o 0T K3
e () =als - AY()]'S (l-e 1) (16)
Substituting (16) into (15),
= t
dy(t) X T %2 % TT . Tuw.im
T {1 +GlAMA'-A a"S,;S,"A (1-et DI
* 2 *_ T -1 *
+GA[M-a’s; s (1-e DS (17)

In the following we look at the physical meaning and justification
of (17). First, if the reference loop were infinitely responsive, 31 would
have to be near zero and (10) would reduce to E;ut(t) = u[§f—A?i(t)]T§d.
This substituted into (15) would give

dY(t)
T2 de

T

* * -
= -t + ca' (8%, "s. " + 0 PnATIE(D)

*

* 2 % T 2
+GA (8°S; S, + o "DI)S (18)

this result is embodied in (17); note that if t is large enough so that
e-t/Tl = 0 (17) becomes identical to (18). Next, we know that without
the reference loop, the weight equation would be

d¥(t) £ T -
L v -(I + GA MA)Y(t) + GA MS (19)
t

with t = 0, e 1 =1, so that (17) turns out to be

dY(t)

x T — *  *
Ty = ~(1 + GA'MA)Y(t) + GA'MS

It is the same as (19).
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To summarize, when t=0, the output of the reference loop is very small
and the weight equation is similar to that without the reference loop.
For t large enough, the output of the reference loop reaches its steady
state value and the array works as if we have a perfect reference loop.
(17) may therefore turn out to a good approximation.

It should be pointed out that an information bearing waveform a(t)
will be comprised of a random sequence of positive and negative steps.
Even after the initial transient there will be signal related feedback in
€¢ resulting from inability of the reference loop to instantaneously follow
signal changes. These will affect the weight control loop even though the
interference input to the weight control loop and the signal residue on

€¢ are statistically uncorrelated.

*
For G large enough such that I can be ignored compared to GA HAT,

(17) reduces to

= t
dy¥(t) . -—
= T %2 * T,T Ty 1T
T, - GIAMA" - Aaa"S; 'S, 7A (1 - e ‘1Y)
£
* * *
+ GA [M-az§d §dT(1 -e DIs (20)

The solution of (17) for the case of a two element array is carried
out in the following. For a two element array, i(c) is a scalar. There-
fore (17) 1s a first order linear differential equation. We divide both

sides of (17) by T and rearrange it to give

t
dy(®) (L .G o, * 2 * T 20T *2.% T, T T 17¢e
T +{12+12[A(B-§I—S-I + 0 1A Aa'S; S, Ae 1}y (t)
.
G % 2 * T 2 2, % T _ T,,.% 2
= AL(B'S; S, +0. ") +a'S; S, e 118 (21)

2
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From the theory of ordinary differential equations, the solution of

det&)— + £(t)y(t) = r(t) (22)
i is ¢
' y(t) = e B8 J D enyaer + ¢ (23)
where ¢
h{t) = [ f£(t')de (24)
o

and C is a constant. (21) is exactly in the same form as (22) with

Using (24) and (25), we get

t
1 .G % .2 * T 2 2, % T,T 1,
£(t) N + = (A (8BS, 8" +0 " I) +a'5; 5,74 e 1] (25)
': ‘ and Tt )
G 2, * T 2 2, * T 1
3 r(t) T, {8 Sy 8; +o, I)+a'S; 5, e 1] (26)
4

t e

1 .G % 2 * T T, , %2 * T, T  Tiiy.ir

h(t)-'J {12+12 [A(B§1§1 +onZI)A +Aa'S; S, A e 1]}dt
(o

* *
= [L+9-A (ezs s.T+o 2I)AT]t
T T =11 n
2 2
_
G ,*2 * T T T
5 + 12 Aa §d §d A L] (1 -e 1) 27
B-7




The constant C in (23) 1is determined by the initial condition. If we
let y(0) = 0, then
C=7y(0) =0

Therefore, the solution of (21) 1is

t

-h(t) eh(t')

y(t) = e r(t')de (28)

o

with h(t) and r(t) given by (27) and (26), respectively.
2. SIMULATION RESULTS

The behavior of a two element array with A/2 spacing as shown in
Figure 1, was simulated. The desired signal was assumed to be spread in
spectrum with an information sequence of 100 bps generated by a seven digit
shift register and a code sequence of 10K bps generated by a 10 digit
shift register. The desired signal arrival angle was assumed to be at

'broadside, i.e. 6, = 90° and the interferer was assumed to be a pure

d
carrier arriving from, OI = 45°, in phase with one of the two binary
signal alternatives.

In the first part, we assume that there is no noise and the SIR is
measured at e, The SIR is defined as thé ratio of squares magnitudes of
the samples of the desired signal and interference at each time. The
signal power and interference power are assumed the same and are chosen to
be 100. The steering angle, 9, ranges from 90° to 70°. G was chosen such

2

that G8~ >> 1. 11

is about the same or several times the information bandwidth of the desired

was chosen such that the bandwidth of the reference loop

signal. T, was chosen so that the control loop bandwidth i{s much smaller

than the information bandwidth. Simulation was done at baseband.




Figure 2 1s the result of simulation with 6 = 90°, G = 10, and

is a parameter. Two values are chosen for 1. :

T 1

=45 1

2 1

1 1
200n 2™ 75007

For the first one, the bandwidth of the reference loop is the same as the

information bandwidth. For the second, the reference loop has bandwidth

five times the information bandwidth. The results show that the response
1

1= 10007 but both have the

same convergence speed. At t=0; the initial value of the controlled

1
with Tl = 3007 fluctuates more than with t_=

weight y was set to zero, and the output SIR is about 7 dB. When t
increasing to half the information bit duration, the SIR increases to
about 40 dB. At the end of the first information bit, the SIR is about 60
dB. However, as the polarity of the information bit changes, the SIR
decreases drastically and then starts to increase, again.
An explanation of Fig. 2 is given in the following. The weight y
is controlled by the correlation of €¢ and Uf With correct pointing, U
contains only interference. Let S and I denote desired signal and inter-
ference respectively. U can be written
U=1 (29)
The feedback is
€ T & T &, (30)
e, can be written
&% T 5% * 1, (31)
er can be approximated by
e =St N (32)
where Nr is a noise term resulting from interference not totally

eliminated by the reference loop filter. Substituting (31) and (32) into

B-9
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(30), we get
ef * (so - Sr) + Io - N
Using (29) and (33), we have

r

* * I * NI *
er = (So - Sr) IU + oU ~ ruU

* * *

= SfIU + IoIU - NrIU

where S_ =S - S .
f o r

*
In (34) the term IoIU drives y to cancel the interference, and the
* *
terms SfIU and NrIU make the weight fluctuate. The fluctuation of the
weight increases as S_ or G increases.

£

The desired signal component of the feedback decreases during the

transient as the bandwidth of the reference loop increases. That is

1

why the response for Tt is more noisy than that for t

D S
1 200
However, increasing the bandwidth of the reference loop also increases the

noise component, Nr’ in the feedback. There is a trade-off between de-

creasing S_. and increasing Nr'

£
The drastic drop in SIR as the polarity of the information bit

changes 1is caused by the delay of the reference loop. The waveforms of

So, Sr and S_ during the transition time are shown below.

f

£
o

B-10
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b2

A

When the polarity changes, there is a spike in Sf. In the short interval

*
of its duration, the term S drives the weight away from its ideal

£lu
value and the SIR decreases drastically.

It should be pointed out that if the desired signal power is
much smaller than the interference, the weights will not be so effected by
the signal when its polarity changes.

The convergence speed is controlled by G and T Increasing G or

2°

decreasing 1, will increase the convergence speed. In Fig. 3 convergence

2
rates for G = 30 and G = 10 are compared. Since the fluctuation increases
as G increases, T was chosen to be Tﬁ%ﬁ?— to reduce the fluctuation.

The results show that the response for G = 30 is about three times faster
than that for G = 10 as expected, and reaches steady state in about one
half the duration of an information bit.

We kept G = 30, T Tﬁ%ﬁ;- and T, * 4, but changed the pointing angle
to see the effect of pointing error. Four steering angles were chosen,
namely, 6 = 90°, which is the correct angle, 89°, 85° and 70°. Results
are shown in Fig. 4. With 5° of pointing error, the array is able to
work well and reaches steady state in about half an information bit,
though there is some degration at steady state. However, for 6 = 70°,
the convergence speed is relatively slow and can not reach steady state
within the first information bit.

The slow rise in SIR when pointing at 70° requires explanation. For
a large pointing error, the desired signal component in U is not small. This
signal component will correlate with the signal component in the feedback
making the signal component into the reference generator time varying. The
apparent effect is to significantly increase the convergence time. This
indicates that knowledge of the direction of the desired signal, or a reason-
able approximation to it, can be used to significantly reduce weight con-

vergence time.

B-11




i
{

Simulation of a two element Applebaum array was also carried out by
setting e to zero. Results show that the fluctuation in response 1is
much larger than that of the Hybrid array. The reason for this is that
the signal component in the feedback is very large in the case of
the Applebaum array while the signal component of the feedback is largely
eliminated by the reference loop in the case of the Hybrid array. We
have seen that the fluctuation increases as S_ increases. In order to

f
reduce the fluctuation, we have to decrease G or increase tv,. This,

2
however, will make the convergence speed of the Applebaum array much
slower than that of the Hybrid array.

We next added random noise to the simulation described above. 1In
addition we took the output point to be the point identified as € ut in
Fig. 1 and determined the SINR here. First the array element signal
power, interference power, and noise power were taken to be 1, 100, and 1,
respectively. Since the spreading ratio is 100 to 1, without adaption the
output signal and interference have about the same power and are 20 dB
higher than the noise. With G = 10, - 76%?' and T, " 4, four
pointing angles, 90°, 89°, 85° and 70° were chosen to carry out the
simulations. Results are shown in Fig. 5. It can be seen that with 5°
of pointing error the loss is not much. Within half an information bit,
the array can null the interference such that its power is much smaller
than noise and the SINR depends on the signal to noise ratio. Therefore
the SINR is about 20 dB which is the signal to noise ratio at the input.

However, for 8 = 70°, the convergence speed is relative slow. But the

array catches up quickly after the first information bit.
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It is worth noting that since the signal power at the array elements
is chosen to be much less than the interference, the weight is not much
effected by the information bit polarity reversals. There is a drop in
instantaneous SINR as the polarity changes since the signal falls to
zero at this time but the weight is apparently not seriously affected.

We then simulated the case when signal power, interference power, and
noise power are 100, 100 and 1, respectively. The values of G, Te Ty
and pointing angles used are the same as those 1in Fig. 5. Simulation re-
sults are shown in Fig. 6. We see that with 5° of pointing error, the
array can achieve 40 dB SINR, which is determined by the signal to noise
ratio at the input, within half an information bit. For pointing at
8 = 70°, the response is slow and is not able to null the interference
below noise within one information bit. As the polarity of the informa-
tion bit changes the weight is driven away from its original value be-
cause the signal has the same power as the interference at the array
input.

To justify the assumptions made in analyzing the transient response,
the controlled weight obtained from (28) of the work on transient response
is compared with the weight obtained from the simulations. Only the
imaginary parts are compared; the real parts are very close to zero.

Results are shown in Fig.(7) and (8). The values of G, 1S and 1, are the

2
same for both figures, which are G = 10, Tl = —7%6;— and 12 = 4, The
signal and interference arrival angles are, ed = 90° and 8 = 45° res-

pectively. Fig. 7 shows the results of the noise free case with pointing angle
at 9 = 89°, Curve a is the theoretical results from (28) and curve b is
the simulation results. These two curves match very well. Curve C is

the theoretical results when we assume that T T 0, i.e. the reference
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loop is ideal. Figure 8 shows the results for the case {n which the

signal power, interference power, and noise power are 100, 100, and 1,

respectively, and 6 1s 85°, Curves a and b here also match very well.

We therefore conclude that the theoretical results are based on reason-

able approximations.
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List of Symbbls - Appendix B

transformation matrix

band pass filter

beamformer output

array output

array output with desired signal despread
output of the band pass filter
reference signal

gain of the weight control loops
spreading code

time function as defined in text
identity matrix

interference component of e,
interference component of U

low pass filter

covariance matrix

noise component of e.

input noise vector

noise vector

noise vector

time function as defined in text

steering vector

arrival phase vector of the desired signsl
arrival phase vector of the interferer
desired signal component of e

o}

desired signal component of e
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List of Symbols - Appendix B
(Continued)

complex conjugate of S

input vector to the sidelobe canceller
vector of array element outputs
transpose of V

sidelobe canceller weights

sidelobe canceller output

amplitude of the desired signal
desired signal power at array elements
desired signal waveform

interference power at array elements
interferer waveform

residue feedback

steering angle

desired signal arrival angle
interferer arrival angle

noise power at array elements

time constant of the reference loop

time constant of the weight control loops
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Appendix C

EFFECTS OF RANDOM AMPLITUDE AND STEERING PHASE ERRORS

ON THE BEHAVIOR OF THE HYBRID ARRAY

Chien - Chung Yeh and Fred Haber

The adaptive array processor proposed by Applebaum [1] uses prior
information on the direction of signal arrival, through a steering vector.

A different system realization which constrains the processor to maintain
constant gain of the main beam is later described by Applebaum and

Chapman [2]. Ideally, both systems achieve maximum signal to interference

plus noise ratio. For application to communication, both systems are very
sensitive to the accuracy of the steering vector [3,3]. To overcome this
shortcoming, a Hybrid array processing technique has been proposed for point-
to-point spread spectrum communication [5]. It has been shown that the hybrid
processor is much less sensitive to error of the expected direction of signal
arrival.

In addition to the error caused by imperfectly information of the
direction of signal arrival, the steering vector might be subject to random
phase errors arising from uncertainties in element positions or as a consequence
of quantization. In addition the system might introduce random amplitude
errors on the array element outputs prior to processing, arising from circuit
disimilarities. An analysis of effect of random errors in the steering
vector in the Applebaum array has been given by Compton [6]. Here we study
the effect of phase and amplitude perturbations on the performance of Hybrid
array for both the gain constrained and the non-constrained processors. The

two versions of Hybrid array based on the Applebaum arrays with and without

gain constraint are shown in Figures 1 and 2, respectivelv. The analysis assumes




narrow band desired and undesired signals and a reference generating
circuit which has achieved perfect spread spectrum chip synchronism with
respect to the desired signal. The analyses and computational results
are presented below.
Analysis:

Consider an N-element linear array with random gain error o n=1, 2, .. N,
on each element. The cn's are all assumed to be random variables with zero
mean and variance ocz. The output signal of the array elements may be
represented by the complex vector

v (e) = cule) (1

1’ gr e 1+cN on

the diagonal, and V(t) is the output vector of the array elements without

where © is an N x N diagonal matrix with elements l+c 1+c

random gain error. V(t) is represented by

J

V(t) = a(t)§d+ Z B, (t)S.

451 By (08, + (D) @)

where §d is the arrival phase vector of the desired signal comprised of N

unit amplitude components, a(t) is its complex envelope; S.. is the arrival

13

phase vector of the jth interference signal, B,(t) is its complex envelope;

j
and N(t) is the complex noise envelope vector, the components of which are
assumed independent with power onz. If, for instance, the elements are arranged
along the X axis at positions xn, n=1l, 2, .. N, the ith component of the

arrival phase vector of a desired signal arriving as a plane wave at an angle

84 relative to the X-axis 1s sdn- exp(jkxncosed).




A steering vector intended for signals with arrival angle 6 but with

random phase error can be written

ejkxlcose.e3¢1 ,s -—
1
jkxzcose j¢2
§ = e . e = s (3)
- : 2
jkx, cos® 3o .
e xN e N sN
L. - T
where ¢n’ n=1 2, ...N are random errors. We will assume the latter to
2
be i.i.d. random variables N(O,o¢ ). From (3), the mean value of § is
Jkx. cos8
[ e T
_ =T Jkx,cos®
S= J¢ . e 2
! jkchose
2 T _
4 /2
= e S (%)
o
—_— 2
j¢ -0, /2
since e = e , and where
—jkxlcosa -
e So1
jkx,cos6
s = le 2 =| %02 (5)
_O .
LejkchosG ;
- oN
_ .

is the steering vector without random errors. Equation (4) shows the

2/

-0
steering vector S is not biased; the constant e ¢ does not matter.




With array output vector V', and steering vector S, the Hybhrid array
with constrained mainbeam gain, as shown in Fig. 1, results in equivalent steady
state weights [ 5]
w o= e (6)
so that
e, = vV ™

The time variable is omitted but implied. 1In (6), the random variable u and

matrix Ml' are given by

N
= ;-'E-M—l'—:i;: (8)
and -
N - o (9
where —_
—_ J
2 k. T 2 2
M o= (-F)la 5,8, + jz=1,8j l—s-*ljng +o 1 (10)

with Fs being the complex reference loop gain. (Note that if FS is

complex, M. is not Hermitian). Substituting (6) and (9) into (7) we have

1
L. S0 T B
e, = w''cy CT8 (11)
using (1), (11) comes out to be
e =uviy “lclgx (12)
o -1 -

Define the equivalent weight vector W such that

e =Vl (13)
o T VW

Therefore, W = u Ml’lc‘lg* (14)

Substituting (9) into (8), we have

A




N
H = — .
ST 1Ml I Tga

(15)

For the nonconstrained Hybrid array processor shown in Fig. 2, the equivalent
weight vector is, as shown in Appendix A,

W= Ml'lc'lgf (16)

The average SINR can be defined as the average value of the SINR

treated as a random variable which is a function of the random gain and
phase errors. With this definition the average SINR of these two system
realizations are the same. However, it is difficult to get, by analysis,
an explicit expression for the average so defined. For analysis it is
easier to determine the separate averages of the power of signal, interference,
and noise, then to form the SINR using these averages. For the nonconstrained
processor, such separate calculations are especially easy since u is one.
We therefore use this approach below, setting p to unity. To insure that
the SINR so determined is meaningful we also carry out an average SINR
calculation by simulation using both definitions, and we find the difference
between the two quite small. Thus we conclude that the SINR obtained by the
analytical technique we have chosen, closely matches the SINR according to
the first definition, and apply to both realizations of the Hybrid array.

By setting u to be one, the average output signal power is

T T. ¥
Py = (as; W) (aW'S,)

2. T, -1 -1_*T -1 -~1T*_ *
= |a l§d MTCSSCM TSy
- - - - * *
- laZIE-TMl 1 c 1§iE§TC 1 My 1T 54 (17)




1 *T-1
cs'sTc?

in (17) is examined in the following. Since C 1is a

diagonal matrix, C-1 is

1+c 0

C " = 1+ <, (18)
0 Y
| l+cN_

For Cn<<1, n=1, 2, ...N. (18) can be approximated by

l-cl

CZ . (19)

* -
To calculate C 1§_§?C 1, take the expectation with respect to random phase

error first.

v T 1T
clssTcly = ¢lsst ¢t (20)
-5 ¢ ==

(‘ *
1
-7 .
S Y ]
"%
N
- j¢2 jk(x,-x,)cosd
2 71
1 e e
i;;Z jk(x,-x,)cos
- 172
e - e 1
-2 )
jé jk(xl-xN)cose 1

e - e -

(equation continued on next page)




jk(xz-xl)cose -

—

1 e
- 2 jk(xl—xz)cose 1
¢ e
=e
jk(xloxN)cose 1
L e
+ (1l-e )

Using (5), (21) comes out to be
2 . -a¢2
+ (l-e )1

-0
%*
s¥T=e ?

S*
=0 §o 2

-0
Comparing (22) with (4), we see that (l-e ¢ )I in (22) is contributed

(21)

(22)

by the self-correlated term, which is similar to the variance. Substituting

(22) into (20), we have

o 2 2
0

-1 % T.-1 O -1~
= +(1l-
(Css¢ )¢ e C'S § C +(l-e ¢ ¢

1

Then, taking the expectation with respect to the random gain error,
2 2

- = s = =0 1 -
cls*Tet = e Pcls *s Tel 4 (1ee ®yclc
== ~o o
-1 *_ T -1
We examine C 'S S 'C in (24).
0 =0
_ R
(l-cl)so1
1, * c,)) *
C's = a- 27862
)
c.) *
1- N SON_J
Cc-7

(23)

(24)

(25)




T -1
§° C = (-(l-cl)so1 (l—cz)s°2 . . .(l-cN)so;] (26)

Using (25) and (26), we have

4 [ 1oc.y? *
i (l-cl) (l-cl)(l--cz)s°1 8.2 . e
: |
-1, * T -1 * 2
‘ C 5,85, C7 = | eydsisp* (locy) )
1-¢) (1- ¢ * aend  en
: (1-9) (A-§)s,15 n (1-cy)
d The expectation of (27) is therefore
, r— 2 * * hy
b 4o, o1 %02 Tt o1 oN
4 1, *_ T.~1 2
; . Tt = *
B c's s, ¢C $,1%02 l+o, ]
g * 2
B 010N 1+0c
— -
; i *
o = s T4l (28)
E: <o =0 c
| cle in 20) s
| RS S | 2
e N ()
> 1
! 2
i (1'02)
2
: (1-c))
i
| = (o D1 (29)




Substituting (28) and (29) into (24), we have
I, 2 2

- -0
UL S U R ¢ 2
c'ss¢c¢ e 2(_o +0 1) + (21-e ) (1+0 )1

Am

- b *. T ~% 2
e §° §o + (l-e )I +o I (30)

Substituting (30) into (17), we have

+ (1-e 7S, M1 Ml §d

- *
+ cc §d M1 M1 §d ] (31)

‘milarly, the average interference output power is

J J T *
P_ = ¥ B..WS._.")
I ('Zl j )(Z 1 37713
3
2
J -c
_ 2 . T, =1 *_ T -1T *
= 187l Te T8 TS S M Sy
j=1
s 2
o T, -1, -1T*_  * 24 *
+ (1-e )§_IjM1 M, 81 +0,8S __IJ M M1 (32)
The average noise power is
*
P= WWED
- - - - * %
=§-M11 1§STC111TE (33)

In (33), we take the expectation with respect to the random gain and phase

errcrs first, giving

Ty S et pli




T e R R TR S PR AR Y AT
N
(1]
e
=
.
JI‘-‘
’
)—a
s
=z
E
~~
[S
[]
[4)
©
=
{
'—4
1
5
»
*

-1T* *
+0NM1K1

(34)
Then, we take the éxpectution with respect to the noise random variables
giving 2 )
P s $gT, SITH T L -l o | T oI, ST
n Tl == 5 v e T W T Ty

2 T -1 -1IT*x *
Gc N Mi M1 N
2

i

o

2770 T, -1T* -1 2 =% -1 -1T*
= Jye TS M M S, +0 “(l-e )Trace [M1 M, ]
: -lT* ;
i + c o Trace M1 Ml (35)

1,  -1T* *
Note that the quadratic N

T, - 2 =1, ~1T* ]
form N Ml Ml reduces to Un Trace[M1 M1 !

J
because the noise terms are independent with each other,
Discussion:

If there is only random gain error, 1i,e. c¢ = 0, (21), (32) and (35)
{
] turn out to be

Ty “lg * Ty ~IT*. * 2 2 T _1 _ire =
S M Sy + la |oc Sg MY Sy (36)

IR .~ . .
o
0
e
A??
I<4
-t
d
Jm
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T
2 2 -1 -1
+o,70, Trace[M1 lMl ] (38)

The first term on the right hand side of each of the equations (36), (37)
and (38) is the output power without random errors. The second term in each

is contributed by random amplitude error and increases as ¢ 2 increasing.

If there is only random phase error, i.e. ocz = 0, (31), (32) and (35)

become
— _0 T*

Pd = lazle

2 o 1T x
la]“(1-e )S M, ]Ml 84 (39)
i
B [e S..T = T, =-1T*
3=1 h| =1Ij Ml 1S *S Mj_ EIj*
2
-c T*
¢ T, -1 -1 *
+ B
2 l |(1 -e )ng MM S (40)
and
2 * 2 *
2% T -1T" -1 % 2, % -1, 1T
P =a e S, M My S, +oy (1-e )Trace[M1 My | (41)

The first term on the right hand side of each of the equations (39), (40) and

(41) is similar to each of the corresponding terms on the right of (36), (37)
-02
¢

and (38) except for the factor e As the phase variance increases, these

terms which represent the mean steering vector decrease. At the same time,

the second term on the right of each of the equations (39), (40) and (41),

-0,2
containing the factor (l-e 0 ), incresses from zero. We point cut that the
assumption of normally distributed phase errors implies errors with c¢ less then,

say, n/2.
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PN

To see explicitly how the signal is effected by the random gain and

phase errors, let us assume that there is no interference. Then,

_ 2. * T 2
M, = (-F)a |§d S +0 1

Using the matrix inversion lemma, we have

T

*
- Y
yl_ 2 [? | AF a8y B
2 J
(l-Fs)de +1

with

Assume that there is only random error, so that §o = S
the Appendix B that substituting (43) into (31) and (35)s we

shown in (44), (45) and (46), below.

2 . g 2
la?]e ¢ n2 la®] (1-e ¢ )N
P =

+
A 2 4 2
d o | (1-F )y 1] o | Q-F )Y N1

ia2|oC2N

+

A 2
o l(1-Fs)YdN+1l

2‘0

A 2
o, l(l-FS)YdN+1|
2

-0
2 ) 2
. o "(1-e ){YdN(N-l)(Il-Fsl YqMH2-2RGF ] 4N

4 2
9, l(l-Fs)YdN+1|

2.2 2
. 0, 9, {YdN(N-l)[ll-Fs[ Y N2-2R F 14N}

A 2
o l(l-Fs)YdN-i-ll
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(43)

S4- It is shown in

get the results

(44)

(45)




where Rer is defined as the real part of Fs. The signal-to-noise

ratio is then

2 2

-0 -
Ye ¢ WY (1-e ¢ )+Ydoc2
SNR = 3 3 (46)
—o¢ -o¢ 2 2
e +(1l-e +a_ )(Yd(““l)'[|1‘Fs| Y 4VH2-2R F 141}

In the following we separately discuss the effect of random phase error
in the steering vector and the effect of random gain error.
First we assume that there is only random phase error. Then (46)

reduces to

2 2
~% )
Y,e N+Y. (1-e )
SNR = d d (47)
1+(l_e ¢ )‘Yd(N-l) [ l 1-Fsl YdN+2-2D.erl
Two special cases are of interest. With Fs = 1, the reference signal
is ideal and we have from (47)
2 2
=9 9
SNR = Y.e N+Y, (1-e ) (48)
d d
Degradation of SNR for this case is the same as that for a conventicnal
beamforming array.
For Fs = 0, we have the Applebaum array for which (47) gives
=g 2 -0 2
4@ ¢ N*yd(l-e ¢ )
SNR = 5 (49)

-Q
14(l-e ° )Y (N=1) (Y,N42)
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Equations (47) - (49) are shown plotted in Figures 3 - 5 for
N =7, 30 and 100 respectively, with Fs as family parameter. The improvements
obtained with the Hybrid array over the Applebaum array are here evident. It
fﬁ ;L should be noted, though, that with increasing N the effect of a given phase
error variance also increases.
Computer simulation was also carried out for a seven element 10\ array
3} without interference with results as shown in Table 1. Six combinations
of FS and 0¢ were simulated, each with 100 samples of random phase errors. The
third column in Table 1 was obtained by compu’ing the SNR for each random
; phase sample then averaging over the 100 samples. The average SNR in the
fourth column is the ratio of average signal power to average noise power
when i equals one. The last column is the results of theoretical computation
based on equations (47) - (49). The difference between the third and the
y fourth column is small. For the Hybrid array with Fs close to one, they are
almost the same. From these results we conclude that the simulation sample
used for the fourth column is adequate, and that the similarity of results
¥ in the third and fourth columns suggests that the SNR calculated as a ratio of
i averages and as an average of ratios are not appreciably different.

If there is only random gain error, (46) reduces to

YdN+chC2
SNR = . (50)

2 2
l+a, {Yd(N-l)[ll—Fs] de+2-2ReFS]+l}

With Fo = 1, we have from (50)

4 2
Y N+O Ty

SNR = -4 cz d (51)

140
c

!
i i
'
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Degradation is the same as that for a conventional beamforming array.

For Fs = 0, (50) becomes

2
YdN+Ydoc

SNR = (52)

2
1+oc [Yd(N-l)(YdN+2)+1]
Equation (50) - (52) are shown plotted in Figures 6 - 8. The Hybrid array
is much less sensitive to the random gain error than the Applebaum array.
Computer simulation was again carried out for the same array geometry.
Results, as shown in Table 2, show the number of samples is adequate and SNR ’

calculated by two definitions are close.
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e it

Average of Each

Average Signal

Fs o Computation Based
¢ SNR Sampled Power Over on (47) - (49)
Average Noise
Power
1.0 5° 18.42 18.42 18.42
10.95e73107) 5o 15.39 15.22 15.29
0.0 5° 3.73 3.00 3.14
1.0 10° 18.33 18.33 18.34
0.95¢" 31| 100 11.52 11.08 11.19
0.0 10° -2.20 -2.96 -2.82

TABLE 1
Simulation of 7 element 10X Hybrid Array with Random
Phase Errors.
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|

Fs o, Average of Each Average Signal Computation Based
SNR Sampled Power Over on (50) - (52)
Average Noise
Power
1.0 0.025 18.45 18.45 18.45
-310°
0.95e 0.025 18.08 18.07 18.09
0 0.025 13.03 12.66 12.77
1.0 0.05 18.44 18.44 18.44
0.95¢7319°| 0.05 17.15 17.10 17.15
0 0.05 8.22 7.56 7.73

TABLE 2
Simulation of 7 element 10X Hybrid Array with Random

Amplitude Errors.
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Appendix Cl
The equivalent weight vector of a nonconstrained Hybrid array shown

in Fig. 2 is derived in the following. The steady state control loop

equation for G large enough is

'* *
V' (ey-e ) =5 (C1-1)
where
€ v = vTow (C1-2)
and
= F aS TCW' +
er s¥2q X n, (C1-3)

Using (Cl-1) and (C1l-2) we have

T TR *
CYVCH' -CVe =8 (C1-4)

*
Using (C1-3) V e, in (Cl-4) is

x T F T . - 21 %o T, _

Ve, =V (FaS; CW'+n) = F_|a |§d Sy cW (Cc1-5)
Substituting (C1l-5) into (Cl-4), we have

*oTw «2ls *s Tewt = s* 1-6

CV VW - CF_la”|s, s, 7CW' =5 (C1-6)
(C1-6) can be written as

CMICE' = §* (C1-7)
Therefore

- - - *
W'=cC 1M1 L 1§ (C1-8)

The equivalent weight vector W is defined such that

e = VW (C1-9)

From (C1-2) and (Cl1-9), we have

-1 =1 *
W=CW' =M 1c 1§ (C1-10)
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Appendix C2

We work out an example to see explicitly how the desired signal
is effected by the random gain and phase errors. Assume that there are

only desired signal and noise. Ml reduces to

2i. * T, 2
= (1- c2-1
Mo Q1 Fs)la s, 54 +0,°1 ( )

The inverse of Ml can be obtained by using the matrix inversion lemma,

which gives

* T
(1-F )v,S8, S
Ml-l - —li [1- s’'dd Hd ] (c2-2)

o (I-FS)YdN+1

Il

withyd' 7 -

c

n

Assume that there are only random errors, so that §° = §d' (31) and (35)

comes out to be

S 2 T*
2, O T, -1_*_ T, -1 _ %
Py = lale 7 sgMy TSy Sy My T Sy
2
- - T*
2 9% o T, -1, -1 _ *
+ Ja®la-e ¥ s T T s,
T2, 2. T 1™ %
T (c2-3)
+ |a |°.;§d My ]‘M1 S,
and
2 2
- T* - T*
2 % T, "1, -1 % 2 ¢ -1, -1
P =0 ‘e Sa M M, Sy 0, (l-e )Trace[Ml M, ] (C2-4)
1™
+0 "o Trace[M; My ]
c-29
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Parts of (C2-3) are evaluted below using (C2-2), Thus

1 % T IT*
SgMyp 8y Sg My Sy = (Sg My TSy (54 My TSy

- '-d 1 —d "I

(1-F )Y
d—d -d
{I- ]§<l

1 T
=3 84
o (1—Fs)YdN +1

*2
I

2
|—l— (1-F )YdN ]|2
o 2 (1-F )Y N+1
n

(N -

N2

4 2
|(1—FS)YdN+1l

and also

T
T* (1- F )Y,S

- - *
TMI 1M 1 s * . _lz s T[I _ d=d —d

(l-Fs)YdN +1

]

n

*
(l—FS)Yd._sd Sq T*

« [T - ] S4
(l-Fs)YdN +1

*

T
1 r (L-F )Y NS, * (l-Fs) YdN§d
=g Sy sy -
o (l-Fs)YdN+1 (1-Fs) YN+ 1
T *
-—1- §d . §d
4

*
% (l—Fs)YdN+1 (l—Fs) YdN+1

N
4 2
o |(1-Fs)YdN+1|
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Substituting (C2-5) and (C2-6) into (C2-3) we have

2 2
— -0 — -
[azfe ¢ N2 Iazl(l-e ¢ IN

Pd =

+
% 2 A 2
o |(1-Fs)de+ll o I(l-Fs)YdN+1|

|azloc2N

% 2
o |(1-Fs)YdN+1|

+

Parts of (C2~-4) are next evaluated. Thus

x T
T, -1™" 1 % 1 7 (I-FvgSy 84~ T*
Sq M M Sy =Sl : ]
o (1-F )y N+
* T
(A-F)veSy Sg  »
« [I - 18,
(1-F )Y, + 1
* s T *
11 FD VNS e A-FYNS,
- Ao -2y L e
o (1-F ) "y N+ (1-F,) N1
T *
1 34 34
T e N+1
o, (l-Fs) YN+ (1—Fs)va
N
'010 5
n I(l-Fs)YaN+1|
c-31
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and also

T* T

(1-F )Y
Trace[M lM -1 ] = —lz Trace[I - d_d —d
o (1-F )Y N+1

* *T T
AR AN IR

1 * | 2
(1-F ) v4N + 1 (1-F )Y N + 1]

*
1 (l-Fs)YdN (l-Fs) YdN
—A[N - - =
Gn (l-Fs)YdN+1 (l—Fs) YdN+1

Il F I 2 2

2
|(1—Fs)YdN+1|

1
7 ; 2
° |(1—FS,YdN+l|

{N[Il-F IZY 2N2+(1 F ) YN

7, 2.2
+ Q-FOVGNL]-[1-F [ 'y N + (1-F )]

[|1-F |2 P (F ) de] + |1—Fs|2Yd2N2}

2
_ YdN(N—l)[Il—FSI YN+2-2R F_]4N

A 2
o l(l—Fs)YdN+1|

where ReFF is the »~2ai rawrt of FS.
Substituting (C2-8) and (C2-9) into (C2-4), we have
g e N
P T ———
4 R
o ](l-Fs)AdJ41|

”
<

-0’
onz(l-e ){v v(ﬂ-‘)[ll-F | YqN+2- 2R F ]+N}
 ——
o (1. )Y N+1|2
n
2 2. avpian 12 _
. o, (vgi(-1)[1 rsl Y W2 2Rer]+N}

% B 2
o, I(l'"g)YdN+1|
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—

From (C2-7) and C2-10), the output SNR is

P
d
SNR = P
n
- -2 — —_ -
Iazle ¢ N2+la2|(1-e ¢ )N+la2|ac2N
= 3 2
2 -o¢ 2 -o¢ 2 2
o e * N “(1-e ¥ 4o Y NON-1)][1-F, | Sy Ne2-2R F 14N}
-2 < 2
Y4e ¢ N+7d(l-e ¢ )+Yd° 2
= L (C2-11)

—02 -02

2
¢ ¢ F |? -
e U +(l-e 7 40, ){Yd(N-l)[Il Fsl Y H2-2R F 1+1}
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List of Symbols - Appendix C

c diagonal matrix with elements 1 + cyr B 1, ...N
<, random gain error on the n':h array element
e, array output
e reference signal
Fs complex loop gain
G gain of the weight control loops
I identity matrix
k wave number
Ml equivalgnt covariance matrix
N number of array elements {
n. noigse component of reference signal ?
N(t) noise vector of array output ’
Pd average output signal power !
PI average output interference power :
Pn average output noise power
Rer real part of Fs E
s steering vector with random phase errors
§d arrival phase vector of the desired signal
§Ij arrival phase vector of the jth interferer
s, nth component of $
§° steering vector without random phase errors
®on nth component of S
2,
u weight factor; a random variable here
v(t) array output vector without random gain error
V() array output vector with random gain error
W equivalent weight vector

34 {Continued)




List of Symbols - Appendix C

(Continued)

weight vector defined by e, = gfrﬂ'
position of the nth array element
desired signal waveform

jth interferer waveform

signal to noise ratio at array elements
steering angle

desired signal arrival angle

variance of random gain error

noise power at array elements

variance of the random phase errors

random phase error on the nth element

C-35
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Appendix D
ESTIMATION OF THE POINTING VECTOR

by

Chien - Chung Yeh and Fred Haber

We deal here with the problem of deriving an array pointing vector
aimed at a desired source assuming that the environment may contain an
interferer emitter angularly close to the desired source. We suppose
that a reference station forms part of the system that station providing
system management, information on ground source location, synchronizing
signals, and also capable of serving as a beacon for organizing the array.
The scenario assumed is shown in Figure 1. The array shown in the figure

and utilized in the analysis is linear though there is no intention to

limit the approach to linear arrays.

The procedure to be examined is based on a two-step process. First
the array will generate a pointing vector aimed at the reference beacon.
This vector is determined by correlating array outputs with the output
of a reflector antenna with good sidelode reduction properties. Then,
with given information on angular displacement between beacon and desired
ground source, the array will steer this vector, aiming it at the desired
ground source. The objective is to get a reasonably accurate pointing
vector toward the desired ground station in the presence of strong nearby

interference and without the requirement of extremely accurate knowledge

of array element locatioms.
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i FIGURE 1

Array Scenario
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1. Estimation of Beacon Pointing Vector.

With the arrangement suggested in Figure 1, assume an N element
linear array with element positions Xys Xgy eee Xy and a directive
reference antenna, though a planar array is likely to be used in
applications, the concept is more easily pursued using a linear deploy-
ment. At this stage the desired ground source is assumed off. The
beacon signal arrival direction is denoted eb and that of the inter-

ferer is denoted 6,. The inputs of the array elements, which are

i
denoted by xl(t), xz(t), eee xN(t), can be expressed as
3¢, jkx cos8 jo, jkx cos®
xn(t) = a(t)e be n b + B(t)e ie n i + nn(t) ¢H)

where a(t) is the beacon signal waveform, 8(t) is the interferer waveform,
¢b is the electrical angle of the beacon signal at the origin, oi is
the electrical angle of the interferer at the origin and nn(t) is the
noise, a(t), B(t), nn(t), ¢b’ and ¢i are assumed to be independent.

The reference from the directive reference antenna is

10, 3oy
r(t) = aa(t)e + bB(t)e + nr(t) 2)

where a and b are complex numbers representing the gains of the reference

antenna to signal and interferer. The vector of array element inputs is

rxl(t)
X(t) = xz(t)

xg(t)




g 1 - .
jkx,cos® jkx, cos®
e 1 b e 1 J “l(t)-‘
jkx,cosd jkx, cosh
o, & 20 s, | 2 H n, (t)
= q(t)e + B(t)e . + .
e1kchoseb ejkchose1 n;(t)
L - -
o, 3o, - - -
= a(t)e "S, + B8(t)e S, + N(tr) 3)

where

ijxlcoseb

- : (%)

ejkchoseb

Jp

is the signal phase vector

-

ejkxlcosei

S, = . (5)

jkchosei

N J

is the interference phase vector and

—nl(t)’
N(t) = | n,(t) (6)

ng (6)
— -

is the noise vector.
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The vector §b is pointing vector we wish to estimate and we consider

the estimator :S_b defined by

T
PR § *
Sy * T L X(t) r (t)de
( T
j¢ jo
= % Jo [a(t)e b_s_b + B8(t)e i§I +_§(ti’
p
iy, i¢y .
* laa(t)e + bB(t)e + nr(t) de. M

(7) can be written as T T
1 * 2 1 * 2
T3¢ (t)§bdt + T L b R (t)§1dt

&’

+
==

T
3 -3¢
{xme b5 b8 L+ n "(e)]

h [ ’ -j¢
+8(e s La*a(t)e b*“r*(t)]

* --Nb * '14’1 * R
+ N(t) k a(t)e + b B(t)e +n (t;J y dt. (8)

The mean and variance of the estimator all now examined. The

expectation of the first term on the right hand side of (8) is

T
-L1.* 72
A =Fas, Jo {a (:)) dt
’aa§_b 9)
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where
<}2(tl/ = az.
The expectation of the second term is
T
1 * 2, ¢
A=Tbs J QOMEL
o
= 10
b 8"S; (10)

where

2 2
87y =8
The expectation of the third term is
T,

3 - -3
4 J SRS d"’>_sb?lf"‘<8<=>> GG, <c>>]

\
o

- -
+ <B(t)> <ej¢)i>§I l a <a(t)> <e j¢b> +<nt*(t):‘/‘:l

r -6 . ~36,
+<§(t)> La*<a(t)><e ! b>+ b <B(t)> <e ! >+

<nr*(t)>] dt. (11)

It is assumed that the beacon signal is a zero mean time continuous,
binary polarity reversal waveform and the interferer is monochromatic at

the carrier frequency of the signal. Then

<u.(t)> =0
oy = 8 (12)
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The phases ob and oi are uniformly distributed between {0, 2n],

so that

@3%>_ .
16,

& Ym0

and the noises are zero mean so that
<nr(t>= 0
CIOPTN

with (12), (13), and (14}

A3 = 0.

From (9), (10), and (15), the expectation of ::.b is

- * 2 * 2
Y\ = +
<3b> aa’s +bg's
The second turn on the right represents a pointing bias which should be

kept small relative to the first term. That is we will want to make

*
|b Bz/azazl<< 1 to avoid significant bias error. We now turn to the

variance of the estimator §b' For two vectors A and B with

R —b -
a4 1
a b
A= 2 and B = 2 ,
aN by
L [
define a b_
171
a,b
AB A 272 )
ayby

(13)

(14)

(15)

(16)

a”n




With this definition, ‘the variance of _§_b can be written as

~ ~ -~ ~ ~ *
Var [§b] = <(§b- <§b>)(§b- <§b>) >

where * means the complex conjugate. From (16), (9) and (10),

< §b can be expressed as

T
AR § * 2, N 1 *,2, N
<§b/’ T Jo a <§ (t), §bdt + T Jo b <@ (t)/gidt.

Since it is assumed that the signal is a binary code sequence and the

interferer is monochromatic,
<a2(t)> = az(t) = az
GO ECRES

Substitute (20) into (19),

T T
1 * 2 1 [ * 2
/'S - — —_
\bl> T [o aa (t)S‘ dt + T jo b B (t)SIdt.

From (8) and (21),

T -~
i¢ -j¢
{a(t)e s [b*e(:)e L, “r*(‘)]
L

~Go-4

joi * -j¢b *
+ B(t)e §I a a(t)e + ur (t)
-j¢

&’

o

~

* b * 'j¢1 * ¢
+N(t) la a(t)e + b B(t)e + n_ (t) } dt
J

(T e,

a(t)e —S-b

* -j¢i
b B(t)e de

(]
-

Jo

¢ T
L T
Jo B(t)e §Ia a(t)e dt

+
3|

(18)

(19)

(20)

2




T
b1 jo, -
+,—},— L {}(t)e bgb + B(t)e 1_§I nr*(:)d:
T - -
i [ -3¢ !
+-% J N(®) lf*a(t)e b, b*s(:)e 1, nt*(czj dt
[+]

Substitute (22) into (18)

var (5,1 = (G, ~(8)) G = &)D

T
}' 10 - 10
1 b * i
.<LT ‘o a(e)e °g b 8(c)e  de

T

+7 Jo B(t)e $,a alt)e dt

+ T . a(t)e _s_b + B(t)e S'I] n, (t)de
T -3¢ -j¢ -

+% I N(t) [a*u(t)e by b*B(t)e i, nr*(t)J d%
o

T aiey W 3%
. a(t)e _S_bbB(t:)e dt

—~
[Laa

-3

T
-3¢ i¢
+-l,f I B(t)e i_S_I*aa(t)e bdt
o

T
-3¢ -3¢ T\
1 b, * i =*
+3 Jo ‘}(t)e Sy + B(t)e §_I—!nr(t)dt

i

T
i¢ j¢
+% J E*(t) !.aa(t:)e by obg(ere T+ nr(c)] dt}}
o '
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(1)

(2)

3)

(4)

(5)

(6)

(7

¢ T . T
j¢ -3¢
-(l a(t)e bs b*e(t)e Lae . [ a(t')e
[}

j¢
* L i L
2 S, s, bB(t)e 4ty

T ¢ T
j¢é -j¢ -

+<l g(t)e i§ a*a(t)e Pae - g(t')e

1% ) I

o ‘o

R T T T T
+<;2 J, a(t)e §bb B(t)e de - B(t e S aa(te
‘o0

= 3 -i¢

+<-1T-2J 8(t)e i§Ia*m(t)e P4t a(t'e

(Te 30

1 b 307 e
+<T2 Jo Lcz(t)e S, + B(t)e §I_j n_ (t)dt

T
-j¢b * -3¢
1 1 ] 1 * 1 ]
Jo [a(t e s_b + B(t"e gI] nr(t )dt>
T

(
+<-1—2 J N(t)
T ) L

-3¢ je

.-
bob*st)e T+ nr*(t):, dt

*
a a(t)e

T
j¢ i
. J gf(c') [}a(t')e b + bB(t') e 1in (t'{] dti>
o r

¢ T T
i¢ -3¢ jeé ~jo
< —;7 ] stre Ps b8(t)e  lar + Ls(t)e tsa"a(tre  Pat
(T -j¢ -3¢
] fatee Pt e s(ee Tty MIn_(e0)ae”
0
+ N (t7)[aa(t)e + bB(t")e +n (t7)]de’)>
jo
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o e bl o s 2 = i 0 = = S ST rmrrw—

4 AL 30
;5 (8) +<—1-2 { J [a(t)e bgb + B(t)e 1_s_1] nr*(t)dt
: T o

re L T T
+ J N(t) [a a(t)e + b B(t)e +n ()| de
; °
’. T T
Z -3¢ 10 -3¢ 30
. EJO a(t')e bgb*be(t')e j'dt'+ Jo B(t")e 1§I*aa(t')e bdt] >
9 L (T 30y 10y 4
9 +<—2 Ft(t)e S, + B(t)e "S.in (t)dt
z T e _J r
¥ . N(t') Jaa(t')e = + bB(t')e ~ +n (t')] dt'> b
¥ o r {
4 ]
% | T l
' r =j¢ -J¢
(10) +<l2 J N(E) ja'at)e P +b (e L4 "(e)] at ;
2 ‘" Vo L r [
i I
| r
i -j¢ i [
: 1 b * L 1 * ] ]
. L E(t e 'S, +8(t)e S, ] n_(t')de > (23) i
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No Noise Case:

In practice, the signal is designed to be much larger than the

noise. It would be reasonable to assume that the noise is zero. Then,
only the first four terms on the right hand side of (23) are not zero.

The first term, in (23), is

5 (T (T

1 J 2

N = a(t)alt')[b] T B (E)3(t")dt dt'

<'I‘2 ‘00 -1 >

T (T

1 [ 2,2

. == a(t)a(t' N |b| ‘1. de de' (24)

1
where_}l é[:i ]is an N x 1 all 1's vector. a(t) 1is a binary code sequence

of rectangular chips with random and equiprobable amplitudes ¥a.
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It can be shown for such a waveform

<a(t)a(t')> = J az[l - -I-t—:t—'l]for e = ¢'| <t
0 otherwise (25)

For T >> t (24) can be approximated to be

T T
l} J { <a(t)a(t')>82|blzjadtdt'

T ‘t'=0 ‘t=0
T t +1
-t !
. lz J o2 [1- 'l%-t—l-182|b‘zlldtdt'
T  /t'=0 /t=t'-1
T
= lz a2182|b|2£1dt'
T ‘t'=0
L 2 .2,.,2
= Fa b L (26)

Similarly, the second term in (23) is

T T
1 [ [ B(t)B(t')Ellalzu(t)a(t')dtdt'>

<_
TZ )tl.o t'O
rT T
= lé J 32|a|2<u(t)a(t')>11dcdt'
T Jt'-o tso
T
=L 1 e%al%pyaer
T /t'=0
o a2132|a|"_]£1 @27
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The third term is

<) letmo |em0o 3P SpSp ¢ e a(t)a(t')B(t)B(t")dede">
T
T T

1 * * j2¢b -j2¢1 2
T2 ab 5,5, <e ><e ><a(t)a(t')>8"dedt’

T" /t'=0 ‘t=0
=0 (28)

because

J2¢y -j2¢

<e > = <e > = (.,

Similarly, the fourth term is

G P £ N
a bS, S.e e a(t)a(t')8(t)B(t')dedt’>
t'=0 /t=0

T T
1 x ox_ T2, 326y 2
== a b§, S <e ><e ><a(t)a(t')>p dtdt’
T° 7t'=0/t=0
=0 (29)

Substituting (26), (27), (28) and (29) into (23), Var[éb] for the no

noise case is

. 12 2 2 12 2 2
Var[gb] ™ 8 [b] 1+ T8 |a|l1 (30)
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where

la] = amplitude of signal at reference antenna output
relative to element signal level

|b| = amplitude of interference at antenna output
relative to element interference level

T = PN sequence chip width
T = integration duration
a2/2 = signal power at each element

2
8°/2 = interference power at each element

Example:

We obtain numerical values for the estimator bias in the no noise
case. Assume at the inputs of array elements the signal is 10dB lower
than the interference, and at the reference from the dish antenna the

signal is 20dB higher than the interference; i.e. the antenna gain is

30dB. Thus
8% = 1042
lal%? = 100(b|%6?
so that
]2 = 1000]b|
From (16)
<§ >=a ang + b*62§1
=a a2[§b + b:Bi §-I]
aa
where
|v*8%] . 1
|a“¥m2 /10
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The biasing error vector is 1//10 of the desired pointing vector
magnitude. This may not be good enough. I1f at the inputs of array
elements the signal is the same as the interference (a condition which
is not unreasonable if the pilot source is a fixed station capable of

substantial power) and the antenna gain is 30dB.

az = 82
and
la|? = 1000|b]?
- * 2 b g2
<§b>=au @b+—*7§1]
aa
where

*
b3 . 1
a*az 10/ 10

This ratio is much better though we would advise using a dish with better

; than 30dB mainlobe to sidelobe ratio to get even greater suppression of

the bias term.

With Noise:

Let the power spectral density of the noise at each array element

be denoted ¢n(f) and assume it to be as shown below

¢ (E)

t

D-15




[~ Let the power spectral density of noise at the dish antenna be denoted

¢r(f) and assume it as shown below

0, (6)
4

o 1

2 T2

-

! and t, are much smaller than 1, the P-N sequence chip width. The

autocorrelation functions of the noise inputs are, respectively

R (t) = E[nn(u)nn*(u +6)]

® j2nfe
= ¢n(f)e df

-0

i 2 sing%E
"% T 2me
T
1 (1)
and
; *
| Rr(t) = E[nr(u)nr (u +t)]
} j2nft
= _m¢r(f)e df
. sin Z%E
g i 22
; % T 2me (32)
; T2
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The variance of §b is given in (23). Here the first four terms are the
same as those for the no noise case, which are given in (26), (27), (28)

and (29). The fifth term in (23) is

1 16
<—

T
j¢b i %*
9 o[u(t)e §b + g(t)e §I]nr (t)dt

i * ] 1
§{ ]nr(t )de'>

(T (T
*
== <a(t)a(t')><nt(t')nr (t)zlldtdt'
T ‘t'=0 ‘=0
T (T
*
t=0<8(t)8(t')><nr(t')nr (:)>lldtdt' (33)

substituting (25), (31) and (32) into (33) and using T >> 1, (33) can

be approximated by

-t !
(T t'+r | sin gﬂi%—E—l
1 2 t-t'], 2 2 '
2 Jt'=0 Jt=t'-1 o {1 T 1%, 2n(e-t7) L19tdt
T
2
-t !
T T sin T{EZLD)
l 2 2 2 '
v 2 Jt'=0 Jc=o Bor Tamroety Ldede (34)
2

Examining the two terms in (34) separately, the first term *s

- '
SinZn(t t')

% t'+t
I J 2 t-t' 2 T2
t'=0

| =

et e A ]
t=t'-t T r 2n(t-t') lidtdt

T

2

L]
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T2 t'=0| tm-1 r 2nt =1
T2
T sin—z-g£
1 2 |t| 2 2
T L- & e e Ly
T2
2 t 2 2
= % JO o [1- rlor 27t 'I-ldt
T2

In the second term of (34) let t-t' = u and t' = v, giving

2n(t-t')
T T sin T
1 Bzc 2 2 I .dtde’
£ T
1% Je'=0 Jemo T ZnlEse) 1
T2
0 T 2 2sinz:;—“
-1 8 2 I dvdu
T2 u=-T jv=-u 2tu
T2
T T=-u sing-}‘-l—
+ 620 2 I :ivdu
2 |uy=0jv=0 r 2ty <1
T2
T sinz—:-2
2 2 2 2
2 JO(T-U)S %r " Ima I,du
T2

From (35) and (36), the fifth term in (23) can be replaced by the

approximate equivalent

2nt
[1 sin72
2 2 2
T jo a”[1- ]Gr Tnt I,de
T2
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(36)




Similarly, the

T
: ]0 E*(t')[aa(t')e

T

sixth term is

T
L } N(t)[a” ()
<= a a(t)e
2 )0=

T (T

t'=0 Jt=0

rT T

2 Jt'=0 Jt=0

T ¢ T

t'=0 jt=0

(T (Tt

T
2 2
+ = }O(T - t)R o

2 jt'=0 |t=m-t

sing-v-r-£
T

2
r 2nt lidt

T2

-3¢
b + b*B(t)e

30, 36,

+ bB(t")e + nr(t')]dt'>

<ﬁ(t)nf(t')>la|2<a(t)a(c')>dcdc'
* 2
<N(t)N (t')>|b|“<B(t)B(t')>detdt’

<§ft)§f(t')><nr*(t)nr(t')>dtdt'

2nt
zsin—;I
2 2 |t| \
la|“a”(1 —lo_ 5 L,dtdt
1
__l
si 27 (t : )
22 2 1 ,
|b]“8%0 Zr (et I,dede
1
g2t Ezt’) . . 2m(e-t')
2 2 Pt e
o_«c 1 2
nr 7
4w2 SE:ELL—
172
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22 2 1
L T ST
"1

L2

(T-t) | b]
20

T i 27t 21t
2 28 n—?— sin—;—
+ T2 0 (T-t)cn o, 1 , 2 1,dt (38)

172

The 7th, 8th, 9th and 10th terms in (23) are zero because of the
independence of the random variables representing signal and interference

phase. Substituting (26), (27), (37) and (38) into (23), we have

. 1 2 2 2 2
Var[s,] = T a"t8°(la]” + [b]T)I,

T sinzgi
2 2 t 2 2
T JO o 1= rlor 2mt Ildt
2
! o o
2
+ = T-t
2
(T sing%E
2 22t . 2 1
+ 7 Jo lal®a®(1- T 10" 5= 1 ae
N1
(T sinZ%£
2 _ 2.2 2 1
+ 2 JO (T-t) [b] 8%~ —— I,dt
1
D-20




(T 1n§%5 si 2:‘
+ 52 0 (T-t)o 20 2 1 3 2 _I_ldt
T r (2nt)
172

To simplify (38a) somewhat assume the rf bandwidths of array elements

and reference antenna equal so that Ty = T, << 7, we then have

. 1 2 2, 2 2
Var(s,) = g a"187(la|” + 6151,

2nt
T sin—;—
2 2, 2 2 2 t 1
+&'Jo a”(o " + |a|0, A= ) g Ijde
B
T singgg
2 2, 2 2 2
TR JO 87(o," + [bl%0, ) (T-t) —5r— 1 dt
“1
(T sin23%£
+2 | (1-t)o %6 2 —2L 1 ac
2 jo n r 2 -1
T 2nt
(-;-0
1

To examine (39), the second term on the right hand side of (39) is

2nt

T sin .
2, 2 2 2 t 1
JO @ (cr + |a %n ) Q- ?) 2nt l1dt

T

1LY

1

21t
T sim—

2 2 1
+ lal%, 1) Jo one 4t

B

2

2 2
=7 (o
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2 2, 2 2 2.1 1 2t
-Te (or + |a| ° )E;-Il - [0 = dt (39a)

In (39a), two integral terms are examined below

1
de
JO Z:t
1
2nt
- T_l bt sinx d
2r O x
T
I sinx
T 2n Jo x 9%
.1
4 (39b)

The other integral term is

T
ainZlE ge = 0 (39¢)
0 1
for T = mt m is a integer, The gecond term in (39a) will also be

1'

negligible for other values of t provided that t >> ¢ Substituting

1
(39b) and (39c) into (39a), the second term on the right hand side of

(39) is
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x sin T
2 2, 2 2 2., ¢t 1
TJa(cr+]a|an)(1 =) It = 1, de
"1
:l o2 (02 + ]alzoz) 1 (40)
= 3T r n 1
The third term on the right hand side of (39) is
T sin‘?;rt
2 2, 2 2 2 1
2 [ B (or + |bl on ) (T-t) 27t -]—:1 de
T s T,
1
T sinm-
- l,z sz(cr2 + |blzcn2)r L [ S
T TS
1
T T
-2 g2 %4 b3 Y L | stn®Eoae (41)
2 r n 27 =1 T
T o 1
T
In (41) J szi.nz—f:£ dt=0 as specified by (39c), (41) then reduces to
o 1
(T si.nZWTt
2 2, 2 2 2 1
-;Z-J B (0 "~ + Ib] o, ") (T-t) it I, de
o 2
|, (Tou
2 .2, 2 2 2 1 1 2nt
’Ts(or"'lblon)hZﬂJ Z_WE_d(rl)
o T,
(oo
1 2, 2 2 2 sinx
—FI.'B(C!r +|b| o )ll } . dx
o
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T

1 2 2 2 2
2T B (ct + |o] °n )Li (42)

The fourth term on the right hand side of (39) will be approximated by

an upper bound, as follows:

T sinz 21t
2 2 2 T
= (T-t)o_ "o 1 I, dt
n r ———— -1
T 2
o 27t
GF—ﬁ
1
T 2 27t
2 2 2 sin” =
<=0 ¢ I 1 dt
T n'r -1 3
o 2nt
)
1
T 2rT 2
J2.2 2 "1t sin’x
T cn r l1 2n [ 1 x2 dx

= 37 % ° ll 43)

f Substituting (40), (42) and (43) into (39), we get our approximation

for Var[éb].

P 2,2 2
var(s,) = T a’8%(lal® + b|%)1,

1
1 2 2 2
, + 37 @ (cr + |a| % )ll

N

1 2 2 2 2
B8 (c " + [b] o )ll

PN <~ .
+

N -

=3

A

She
o
"
A

o o I (44)
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To examine the estimated éb more thoroughly, we go back to (8). (8)

can be written as

(T T )
* *
- J a'a?(0)s, dt + lj b"8% (£)s,dt
(o]

|-

T
o

a(t)e ~[b B(t)e + nr*(t)]dt

o

&
Al

T
{ j¢b * 'j¢1

T
¢ -3¢
l 8(t)e Ilata(t)e P + nr*(t)]dt

o

= 1l

+

= 1L

T
* -j¢b * *
N(t) [a a(t)e + b B(t)e + n, (t)]dt (45)
o

The 2nd, 3rd and 4th terms in (45) are zero mean with variance not
zero when T is finite. However, the 2nd and 3rd terms can be written as
Cl§b and CZ§I respectively where C1 and C2 are uncorrelated random variables.
So the 2nd term contains signal information and the 3rd term contains
interferance information. The 4th term is random fluctuation.

From (44) the variance contributed by the 4th term of (45) is

T T
2 1 2, /2 2 1 .2,,,2 2

a“lal + 55 8 Y o,

crf = 2T a cn

2

T
1 2 |
* 2T % % (46)

(45) can be written
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Jw
.
- * 2 x 2 v, 47
§b = (aa + C1)§b + (b8 + CZ)§I + uze
jw
N
u
e

In (47), ul, u2, e . . uN are independent random variables with zero
2 4
mean and variance ¢ 2 =g 2 - . =0 2 = orf . (48)
Y1 Y2 uN

Wi Wys - . . Wy are independent random variables uniformly distributed

between [0, 27]. The un's are independent of the wn's.

From (44) and (45) we can see that the variance of C1 is

2 T 22,2, 1 2
ocl =ga8 [b|€ + 5T ¢ 0, (49)

and the variance of 02 is

2 1 2 2|a|2 1.2 2

o =7 8 a + 3T B8 0. (50)

*
Since the standard deviation of C1 is much smaller than |a azl, C

p can
be ignored in (47). Thus we have
*82 + C i )
s, = a*az(S +b—-——g- S, + 1 ejw1 (1)
) =b * 2 1 * 2
aa aao
U dvy
~5 ©
aa
L ]

*
The constant a a2 may be dropped. (51) becomes
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_ jwﬂ
* 2 V_e
- bR + C2 1
§b =_S_b+—T'f——_S_I+ . (52)
aa .
jw
V e N
[N
N
where vN = r is a r.v. with zero mean and variance
aa
2
o 1
s 2. Un
VN Ial204
T T
1 1 2 2 2 1 2 2 2
la%® 2T o"lal% " + 57 87 bl %0
a| o
T
1 2 2
* 37 % % | (53)

2. Scanning from Beacon to Ground Station.
We now turn to the problem of steering the beacon phase vector to

the direction of the ground station. From (16) we have

- b g2
5> =S, + 5.2 S, (54)

§b and §1 are beacon and interferer phase vector, respectively, uz and 62

are the power of beacon and interferer. a and b are complex numbers re-
presenting the voltage gain of the dish antenna on beacon signal and

interferer, respectively.
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To examine (54) more thoroughly, define

b 82
Y = Ype Y IV ¥ w3 (55)
aa
Then,
<S> =S, +¥S; . (56)
It is reasonable to assume that beacon and interferer have the same
order of power and that the dish antenna has a 30 dB mainlobe to side-
2
lobe ratio i.e. a2 = 82 and %3+5 = 103. Then |y| is in the order of 10-3/2.
b
From (5b),
- -
jkxlcosob jkxlcose1
e + ve
- jkx,cos6 jkx,cos6
<S> = e 2 by ye 2 1 (57
ijchoseb + jkchose1
e ye .
where eb and ei are beacon and interferer directions.
To see the phase of the nth element of <§b> we write
jkxncoseb jkxncose1
e + vye
jkx_cosf jkx (cos8, - cos8 )
=e ® Ppgge o H . (58)
The term in brackets of (58) is
jka_(cosb, - cos8 )
1+ ve n i b
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=1 + o.Recos[kxn(cosei - coseb)] - YImsin[kxn(cosei - coseb)]
+ j{YResin[kxn(cosei - coseb)] + yImcos[kxn(cose1 - coseb)]} (59)
v
= A e n
n

The phase term wn is what we are interested in and is specified by

cany = yResin[kxn(cosﬁ1 - coseb)] + yImcos[kxn(cosei - coseb)] o)
n
1+1Recos[kxn(cosei - coseb)] - YImsin[kxn(cosei coseb)]

For |y|<<l, (60) can be approximated by

tanwn ] yResin[kxn(cosei - coseb)] + yImcos[kxn(cosei - coseb)] (61)

Since tanwn is small, tan wn = wn.

wn = yResin[kxn(cosei - coseb)] + yImcos[kxn(cosei - coseb)] (62)
From (58) and (59), the nth element of §§b> is

jkx_cos® jkx _cos8 Jj(kx cos8, + ¢ )

e O b + ye n 1. A e n b n (63)

n

The normalized mean value of the estimated beacon phase vector is therefore
- -

ej(kxlcoseb + wl)

R j(kx,cos8, + y.)

5> = 2o (64)

j(kx, cosb, + ¢ )
Le"nbNJ
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In (64), Vs ¥ps coe Yy are phase errors. (62) shows that vy is correlated

with kxncose which is the correct pointing phase. However wn is more like

b

a random phase error as the following example shows. The phase error of the

nth element as given by (62) involves trigonometric functions of [kxn(cos

ei - coseb)]. Thus we need only consider the mod-2w version of this
quantity, assume both ei and eb are near‘% rad (both beacon and interferer
1
are near broadside and ei -eb ~ 56)' Then
8, - cosé, = sin(3 - 8,) - sin (5 - 6. )
cosd, - cosb, = sin(3 i sin 5 b
= - :‘1_
=% " 20 -

Assume an array of 10 elements with array size * 500 wavelengths, the

average spacing between elements is 50 wavelengths. Then

kaxAB8 = 2q¢ + 2.5

Adjacent elements will therefore differ by the order of 5 radiuses and
the modulo 2n phase differently will tend to be random. With non-
uniform spacing the modulo 2n phase differences will be further ran-
; domized. Therefore wn may approximately be treated as a random variable

with zero mean and variance

H 2 2
1 Ow = <wn > (take expectation over xn)

n

p <Y§eSin2[kxn(cosei - cosB)] + Yim cosz[kxn(cosei = co8.))

+ ZYReyImsin[kxn(cose - coseb)]cos[kxn(cosei - coseb)]>

1 1 2 1 2
) } .-Z—YRe +—2.Y1m
1 2
-1yl (65)
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In (65) mod (kxn(cose

between [0, 27].

If the integration time in estimating is finite, the estimated

beacon phase vector is given by (52)r
v
) b"8? + ¢,
R N T Tl
aa

where 02 is zero mean with variance

2 22, ,2 . 11 2 2
ocz = % g a Ial 5= B

+ 2T © %¢

and where vl' V2, e VN are independent random variable with zero mean

and variance

ejwﬂ
1

2 1 1 2,2 2 "1 2
ov = 3 4 5T a |a| g + 7T B |b
a |al%
T
1 2 2
* 77 % %

Wy w2, «v. Wy are independent random variables uniformly distributed

{ " coseb)) is-assumed to be uniformly distributed

2 2
|“o
n

between [0, 27]. The vh's are independent of the w_

c

2

Define ;;;5 = ) = Are + 3 1

A is zero mean with variance
2
o]
2__ %
% 7 &
la]“a
D-31
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(66)

(67)

(68)

(69)




22,2 '1.,2 2
- —5 T efe’lal® 4 5pe%0 %)
|a|“a

using (55) and (69), (66) becomes

F jw;

v,e
sz

= §b + (Y-+A)§I + v,e

&’

.jw
v.e N

N

The nth element of sb is

jkx cos® jkx_cos® jw
e " b, (y + e ° lyve

jkxncoseb jkx (cosei - coseb)

= e 1+ (+2)e ® + Vv

Let vn = v + jv and define

nlm

ju- jhkx (cosei

A" e =1+ (+Ne " +Ve
n a

Proceeding as was done in going from (7) to (9) we have

<
Y
13

= (YRe + xRe) sin[kxn(cose

i—coseb)]

+ -
+ (v AIn? cos[kxn(cose coseb)l

Im i

+
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j(wn-kxncose

n

-coseb) j(wh-kxncoseb)

v Re sin(wh—kxncoseb) + VY Im cos(wn-kxncoseb)

(70)

(71)

1(72)

(73)

(74)




The normalized beacon phase vector estimated is
ej(kxlcoseb +y 1)

. ej(kxzcoseb + w‘z)

d’

j(kch;seb + w‘N)
e
_ J

As in the case ofl& we can argue that w‘n can be treated as a random error.

w‘n is zero mean with variance

2

v
n

o = <®‘nf>

1

1 22 2
+ YA % B a )al +
2|al“a

T
1 2 2
2T 8 or ]

T T
1 1 02,2 2. %1 2,.,2 2
7% lap o lal%e" + 37 8%Ibl %0
2]al“a

+ﬁ-c o 7] (76)
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In (76), the dominant terms are

2.4
1 b8 1 Tt 22 2
= + = 8%a“|a|
2 la‘zua 2|a|2a4 T

In order to form a beam in the direction of the beacon station,

the array processor will put a phase shifting vector which is the con-
-~ %
jugate of the estimated vector, i.e. §b .
e-j(kxlcoseb + Y 1)
= le .

-j(kcho;eb R

&

e
. -

We now turn to the problem of steering the pointing vector from the
beacon to the desired source. The basis for this approach is developed
in Steinberg [ 1 ] pp. 246-249.

Assume we have a linear array on the X axis with element positions
imperfectly known. The beacon station is in the direction eb as shown

in the figure below.
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The steering vector for forming a beam on the beacon is given by
(77); the nth element phase shift is given by —kxncoseb-w;. We now

want to move the beam through an angle ¢ from 9 A phase shift ¥

b’
needs to be added to —kxncoseb-W’n, Vn being determined in the following
way.

The array processor imperfectly knows that the location of the nth
element is x, + an where an is the location error. To form a beam in
Sb, the phase shift calculated by the array processor is -k(xn+5xn)coseb.
to form a beam in eb + ¢, the phase shift calculated by processor is

-k(xti!-éxn)cos(eb + ¢). The phase increment determined by array processor

is, therefore,

Wn = -k(xn + Gxn) cos(eb + ¢) + k(xn + Gxn) cosGb (78)
The total phase shift when pointing at angle (eb + ¢) is the sum of the
phase determined by focusing on the beacon (the phase in the exponent
in (77)) plus the increment in (78); i.e.,
A¢n= -kxncoseb - wn + Wn
= -kxncoseb -y n " k(xn+6xn) cos(eﬁk¢) + k(xdbsxn) coseb
= —kxncos(eb +¢) -y n kancos(96+¢) + kan coseb (79)

In (79) -kxncos(eb + ¢) is the correct phase shift and -w‘n -kéxncos

(eb +9¢) + kdxncoseb is error. Let wen denote the error of the ath

element.
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&%

wen - n k(Sxn cos(eb +¢) + k&xncoseb

= -y n kdxn cosebcos¢ + kdxnsinebsinQ + ksxncoseb (80)
If the scanning angle ¢ is small, cos¢ = 1 and sin¢ = ¢. (80) is then
approximated by
Ven = —¥ a + kQGxnsineb (81)
Ven is a function of eb. If the array is being used for near broadside
reception Gb > 90° and sin eb can be set equal to unity. If Gxn is zero
mean variance °6x2’ Yen is also zero mean with variance
2
oy =, 2, k2¢zsin26b06 2 (82)
en n X

where cw, 2 is given by (76).

n
Example:

We assume a reference dish antenna with, (1) a 30dB mainlobe to sidelobe
ratio, (2) signal and interference of equal level, both 20dB above the noise
of each element, and (3) equal noise generated in the array elements and

the reference antenna amplifers. Thus

al =1000. b2 =1. of =82 = 1000n2 - 1000r2.

The variance due to estimation is given by (76)

2 bZBQ
o =

Yo 2%t

1 T 22,42, 1.2 2
+ [= 8 alal® + 5% 80 7]
zla|2a“ T 2T © ¢
1 1 2, ,2 2. %1 2,.,2 2
+ 2| |2 4 [2T a ' n + 2T B lbl %
T
1 2 2
+ T 0n or ]
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(P et

Using the number assumed, the terms in o

Therefore

v 2 are then
n

T . T 2 T

1 27,2 2 1 |a| 4 1.4
772 18l%, =31 Yoo o =T
T T

1 .2,,,2 2 1 1 4
2T 8 lbl on 2T 100 @

the variance due to estimation is dominated by

v2g* 1

T 22 2
+ =8 a |a|
2|alzaa Zlalza4 T
bL
1 T 4
= + -~ 1000 a
ZIalza4 Zlalzub T
1 T
2000 ' 7T

3

Therefore, with T large enough (T >> 1071 insures this result).

2

- 4
v, 2000

[V =5 x 10
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2
The total variance © is
wen

N

2 2

2.2 2
=0 ., + k¢ sin 8,0
en ("] n b 6x

1
with sin eb 1, ¢ = 20 ° and O 5x in wavelengths

2
ci -0 .24 iﬁlli. o 2
en v (20) X

o 2
= 5x107" + 2%
-j10°
For Fs = (.95e , N= 7, and Yd = 10, the standard deviation for 1 4B
loss is about 2° or 0.04 radians. Let Gi = 0.042 = 0.0016 then

en

Tox = 0.1x; this 1is a fairly tight tolerance requirement.

However, for Fg = 0.95, N= 7 and Y, = 10, the standard deviation for

d
1 dB loss is about 7° or 0.14 radians. The tolerance of element positions
is, in this case, de = 0.44); the tolerance demands are more relaxed in
this case.

We point out that in these examples the dominant contribution to
the total pointing phase error is the error induced by steering from
beacon to ground station. That is, if the values chosen for reference
antenna sidelobe levels are, in fact, realistic, the method is shown by
these examples to result in adequate estimates of the beacon pointing

phases. The adequacy of the final estimates of pointing phases to the

ground station depends now mainly on the scanning range, and the un-
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certainty in element position. If the error induced by the scanning
process were totally eliminated the pointing vector would be left with
an error variance of 02 = 5x10—4 (a standard deviation of about 1°)

en __jloo

which, even with Fs = 0.95e , causes a loss Iin SINR is negligible.
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List of Symbols - Appendix D

gain of reference antenna to beacon

gain of reference antenna to interferer
random variable

random variable

expectation of [ ]

N x 1 all 1's vector

wave number

noise at the nth array element

noise at the reference antenna

noise vector of the array elements

output of the reference antenna
autocorrelation function, array element noise
autocorrelation function, reference noise
arrival phase vector of the beacon
estimator of §b

arrival phase vector of the interferer

integration time

random variables with zero mean and variance ogf, n=1, 2,

.+.N

random variables uniformly distributed between [0, 27], n =1, ...N

nth element position

input vector of the array
<a?(t)>

beacon signal waveform
expectation of az(t)
<g2(t)>

interferer waveform

(Continued)
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List of Symbols - Appendix D
(Continued)

random variable

imaginary part of ¥y

real part of y

position error of the nth array element

total phase shift of the nth array element when pointing at angle
(6, + ¢)

beacon arrival angle
interferer arrival angle
random variable
imaginary part of X

real part of A

variance of C1

variance of C2

noise power at array elements

noise power at the dish antenna

variance contributed by the random terms in estimating §b
variance of the error of array element locations

variance of A

variance of wn

variance of ¢
en

variance of w;

duration of signal chips
inverse of the bandwidth of ¢n(f)
inverse of the bandwidth of ¢r(f)

(Continued)
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List of Symbols - Appendix D
(Continued)

scanning angle

electrical phase angle of the beacon signal at the origin
electrical phase angle of the interferer at the origin
power spectral density of noise at array elements

power spectral density of noise at the dish antenna

total phase error of the nth array element

phase error in the nth element of <§b>

phase error in the nth element of éb

phase increment of the nth array element in order to scan the beam
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I. INTRODUCTION

Adaptive Arrays for Communication based on the IMS algorithm of Widrow [1],
but utilizing a self-generated reference, have been subjects of study in the past
[2]. These methods are based on the exploitation of a distinguishing character-
istic of the desired signal which enables it to be separated from unwanted signals.
Typically, the desired signal is viewed as being spectrum spread by a known code
so that with despreading a moderately clean replica of the desired signal is de-
rived from the array output. With this as the reference, array focusing toward
the desired signal is improved, in turn improving the reference. The scheme pro-
posed and analyzed heretofore is shown in Figure 1 {3], and is here called the
“"LMS adaptive array with coded reference signal loop.” Each array element is g
soan to be weighted, the weight being determined via an LMS loop driven by the
correlation between element output and array output with reference subtracted.
The limiter functions, in part, to prevent the weights from converging to zero. i
A difficulty observed with this arrangement is that incidental phase shift in
the band-pass circuitry of the reference generating loop will cause the weights
to cycle indefinitely with cycling amplitude range and frequency depending on
the main feedback loop gain and on the magnitude of the reference loop phase
shift [4,5). Methods of adaptive compensation to overcome this effect have becen
pursued [6]; non-adaptive correction is not apt to work because of uncertainty
of the center frequency caused by doppler shifts and oscillator frequency
errors.

An alternative circuit in which one element is left unweighted and the

limiter omitted is shown in Figure 2. To distinguish this from the previous

circuit we refer to this as the "LMS interference canceller with coded reference

signal loop”.
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Constraining the welght of one elcment to be constant, the all zero array weight
condition cannot arise making the limiter unnecessary on this account. Now, how-
ever, operation will be affected by both phase and amplitude -differences between
reference and signal component of the array output. The analysis presented below
is intended to reveal the properties of this circuit with particular atteation to
the weight convergence and the output signal-to-nolse ration (SNR). It i{s shown
that under simple attainable conditions the weights do converge to a constant final
value. The configuration of Figure 2, however, generates a variable SNR at the
summer output, the SNR possibly being as low as that of a single array element
depending on the reference loop gain and phase shift., Because this may be trouble-
some to the reference generator a variant of this circuit, in which the signal to
the reference generator is the sum of weighted clement outputs only (see Figure 6),
is also analyzed. The SNR at the reference generator input is, in this case,

the full value expected out of (N-1) coherently combined elements. Finally, the

SNR at the point from which signal output is to drawn is obtained.
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II. N-Element LMS Interference Canceler

An N-element interference canceler is shown in Fig. 3. The signal from each
antenna auxiliary element yj(t), { = 0,1.,.N~1, i8 passed through a quadrature
hybrid forming pairs of components y;y(t) = y;(t) and Y1Q<t) = §1(t), i=1,2,..
N-1, where the caret stands for the Hilbert -transform (90° phase shift). Each

of these quadrature signals is weighted by real factors Wyy(t) and Wiq(t),

respectively, and then summed together with the signal from the main element
yn(t) to produce the actual array output va(t). The difference between the
array output and the reference signal d(t) is the error signal e(t). Utilizing §

e(t), the feedback loops adjust the weights Wir(t) and Wijq(t) so that the

mean-square error le(t)|2 is minimized.

*

The operations performed in Fig. 3 are represented by the following: The

pairs of signals yj(t) and yj(t) are used to express the analytic signal,

xg(t) = [yg(t) = 355(I1/VT (1)
The complex weights W;(t) Wyp(t) + jWiq(t) 1 = 1,2...N-1 act on the x;(t) i
to generate an output which, in analytic signal form, is given by,

v(t) = xT(e)W(t) + x (t) (2)
where WI(t) = {Wl(t), wz(t),...wu_l(t)}, xT(t) = {xl(t),...xN_l(t)},
1 stands for transpose, and xy(t) = [yn(t) = jyn(t)])//2Z is the analytic signal
representation associated with the signal from the main (unweighted) element.,
The actual signal at the output of the array is given by

va(t) = Re{v(t)} 3
and

e(t) = d(t) = v(t), (4)
where e(t) and d(t) are the analytic signal representations associated with the

error and reference signals, respectively.




The weight are assumed to be adjusted using the steepest descent algorichm

[1]; that is, they are determined by
dW(t)/dt = -kay Ele(t)?] (5)

where gg is the gradient with respect to W, and is understood to be a complex
vector whose components are the gradients with respect to the real and imaginary
parts of W, respectively, and k i{s the main feedback loop gain. E(-) denotes
pathematical expectation. Following the derivation in [1], (5) reduces to
W(t)/de = 2KE[x*(t)e(t)] (6)
where the asterisk denote complex conjugate.
Using (6) with the instantaneous product [5*(t)e(t)] as an estimate of
the corresdonding expected value this becomes the complex LMS algorithm whose
equivalent network for one antenna element is displayed in Fig. 4. Substituting
for e(t) using (2) and (4) we get the differential equation that governs the
weight vector W(t)
dW(t)/de + 2kRM(t) = 2kRyy - 2KE[x" (t)xy(t)] (7
where R, = E[g*(t)Ef(t)] is the input covariance matrix and R,y = 5[5*(t)d(t)].
In obtaining (7), using the network of Fig. 4 as a basis, an assumption
commonly made in the analysis of adaptive arrays is used. That is, that the signal
and weight processes, the latter now being a random process, are independent. g(:)

in (7) and in the subsequent work should therefore be viewed as an expectation.

For the case of a single CW signal of amplitude A arriving at angle y to




broadside we have(!)
x(t) = ARexp(Jjwct]/vZ + N(t) (8)

xn(t) = APyexpljuwct]l//Z + ny(t) (9)

where PT = {e-jcl, e-jaz... e-ja"'l}, Py = g-juN -]

ag = (20Ly/A )sing 1 = 1,..N-1 (10)
A 1s the signal amplitude,i. is the free space wavelength at frequency w., the L4
are the distances between the ith and the main element, NT(t) = {n;(t),...ny_j(t)}
is the noise process vector and ny(t) is noise process at the main (unweighted)
element. The noise at the ith element is written

ng(t) = ngy(t) = Jngq(e) (11)
with

Elng;2(e)] = Elngo2(e)] = o 2/2. (12)
Hence

E[ni(t)nj*(t)] = °n2 for 1 = j, and every {

=0 1+) (13)

The covariance matrix of the element output is therefore

R, = ¢ + o2l (14)
where ¢ = A2P*PT/2,

Therefore (7) can be written as

dW(t)/dt + 2k(Q + o2D)W(t) = 2kR 4 - kAZR*Py (15)

(1) We assume without loss of gemerality that x(t) contains no interference. In

fact, the interference term will only change the matrix ¢.
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IIXI. M-Element Interference Canceler with Reference Signal Loop

a) Solution of the Equation for Expected Array Weights.

When the array output v(t) 1s processed to produce a reference signal as in
Fig. 5, then

d(e) = lﬁgtexp[jwctlljf w(t) + APNexp[juct]//EJae-jo

(16)
where a is a positive counstant depending on loop gain and filter attenuation
and ¢ is a phase shift introduced by the reference loop filter. Noise and

interference entering the reference loop will be substantially attenuated fol-
lowing the filter and as a consequence d(t) is represented in (16) as free of
these influences.
Using the definition of Ryq we have
Ra" E{E*(t)(Agexp[jwct]//23(t)+A//7PNexp[juct]}ae'J¢
= [eu(t) + A%P"py/2]ae™d¢ | (17)
Thus (15) becomes
i dW(t)/de + 2k[(1-ae~1¢)g+o2I1UW(t)= ~kA2(1-ae~30)P*P . (18)
The matrix ¢ is Hermitian having rank equal to one.

Therefore there exists a constant unitary matrix g such that Q'QQ = A (the prime

denotes transpose conjugate) where Ais a diagonal matrix with only one non=-zero
element Ay.j.

Premultiplying (18) by Q' we get

- - ]

: dre)/de + 2k[(1-ae™39)p + o21Ir(e) = -ka2(1-ae™3)q"p"py
! (19)
where
1 I(t) = Q'w(e) (19a)

(19) is obtained also using the fact that g'g = I. It can be easily shown

b that g'g* is a complex vector with only one non-zero entry which equals

[l:xN_I/Ale55, where § is some arbitrary constant. Ne will choose § = O.




with r7(e) = [y (t),ccencncs, vy Ct)] (19) can be written 5]
dy (t)/dt + 2ko2y,(t) = 0 & = 1,2,...,N-2 (20)
dvyo (©)/de+2kl (1-ae=I0)rg_ +a2] oy CE)
= -2kA/i;:;7i(l-ae‘J¢) (21)
Note that in (20) we have used the fact that Ay = 0 for 1 = 1,2...N=2,
The solution to (20) is given by |
vy(t) = v41(0) exp[-ch“t] l=1,2...N=2 (22)
(21) is solved by decomposing it into its real and imaginary parts which
are given by
dyf_;(t)/de+2k[(1-acosd) g +o2] v, (t)+2kasingdy_ vh-; (C)
= =2kAYXy-17Z[1~acosp] (23) .
dyﬁ_l(t)/dt-Zkasin¢AN_ly§_l(t)+2k[(l-acos¢)AN_l+ q%]yé_l(t)
= =2kAVX§-1/2(asing] (24)
where yy_, (t) = y§_,(t) + jYé.l(t)

These two equations can be written in matrix form as,

lelq-_l(t)/dt .l-acos¢) + ¢ asing ﬁ‘l(t)
+ 2kAN-1

dYﬁ_l(t)/dtj -asing (l-acosg) + ¢ Eé’l(tb

1-acos¢
= ~2kA/AN-1/2
asing (25)
where
c= °§/AN-1 (26)

Using a diagonalization transformation (see Appendix A-1) we find the solution
to (25) to bé (see Appendix A-1)
V-1 €€) ={[¥§_1(0)=C_(9)] cos(2kry_; asing)t
-[yﬁ-l(O)-Ci(¢)] sin(2kay-jasing)t}
exp. [=2kiy- (1-acos¢+e) e ]+C ()




Y-1(t) = {[y§-1€0)-C;(4)] cos(2kiy_; asing)t

+ [v]-1€0)=C.(¢)] sin(2kiy.; asing)t}

exp(=-2kin-1(l-acos¢te)t] + C3(4) (27)
where c . (¢) = - A (1-acos¢)(l-acosste) - a281n2¢
F /0y-; (l-acos¢t+ )2 + aZsin?y (28)

C,(¢) = - A asin¢(2 - 2acos¢ + c)
1 Z ¢ alsin
Xy-1  (l-acos¢t )© + a®sin‘y (29)

b) Stability Condition
Stability is viewed as requiring the expected value of the weight vector
W(t) to converge to a constant steady state value. This, in turn, requires
the vector I given by (19a) to approache a constant. The components of Iy Yoo
{ =1,2,..N~1, must therefore converge. The first (N-2) components given by (22)
will coaverge for k > 0. For yﬁ_l(t) and yé_l(t) to converge to the
final values C.(¢) and C4(¢) respectively, it is necessary and suf-
ficient that
1 - acos ¢ > -¢c
be satisfied. Furthermore, one can show that Ay-; = (N—l)AZ/Z and there-
fore using (26) this condition becomes
1 - acos ¢ > -Zag/Az(N-l) (30)
i For this to be satisfied for any signal-to—noise ratio (AZ/Za%) it
4 | is sufficient to require that

acos ¢ <1 (31)

4 In particular if we choose a<l the system converges to the steady state re-

gardless of the input SNR and/or the amount of phase shift in the reference loop.
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¢) Array Output SNR

The complex envelope of the desired signal at the array output is given by
s(t) = (A//2) [PTH(t) + Py)
= (A//2) [PTQr(e) + py)
By using (20) we get in the steady state
— T
lim s(t) = (A/V2) [P qy (=) + P ]
t+e ~ 1 N-1 N , .
where q; 1s the last colummn of the matrix Q. By definition Q ¢Q = (A2/2)_ _'g'g = A,
therefore (A//2)PTq = /X ", and

N:
lim s(t) = yy.j(=) VAyo) + A/V/2Z (31a)
tom
If the stability condition is satisfied then lim s(t) exist and the output desired
tro

signal power S, is given by

Sy = lygoy(®) /Xy + A/VZI2 (31b)
With yn-1(=) = Cp(¢) + jCi(¢), and using (28) and (29), we obtain

S, = A2[(1 + al(p 3 + o 2(9)1/2 (32)
where

ap($) = =C.(9)/2Xy_ /A (33)

ag(¢) = —Ci($IWZhy (/A (34)

Also the noise power is given by
N, = 0, 2C0yg (=12 + 1)
= 0,2182/20_; (0 2(9) + ay2(¢) + 1)

Since Ay_; = (N-l)A2/2, we have

Ny = op2[(1/N-1)Car2(9) + ag2(4) + 1] (35)
From (32) and (35) we finally write for the output SNR

Sy o A2(N-1) (Oro(®) + 2 2(9) + 2a () + 1

2 ]
K, 20,° agl(9) + o °(¢) + N-1
- AZ(N-I) (2-2acosé + c)2
Zonz N[ (1-acosg+c) + a®sin®y)-c(2-2acos¢+c)) (36)
E-9
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The last step is obtained in (E.13) of Appendix A-2. Note that in contrast to
the LMS adaptive array with coded reference loop as treated by Compton and DiCarlo,

here the output signal-to—noise power ratio depends on the reference loop phase

shift and gain. This ratio is less than AZ(N-I)/an2 for most practical
cases (see Appendix A-3) 1f we choose a to be less than one. The output SNR may
even fall to the output SNR of a single element, A2/2an2 (see Appendix A-4).
From these results it is evident that in the network of Fig. 2. The array
element outputs are not being maximally combined to give the expected array gain !
of an N element array. In particular, the variability of the SNR at this point is i
apt to affect the performance of the reference generating loop. However, we now
show that utilizing only the weighted element outputs as reference loop input one
gets an SNR close to the maximum and not dependent on the parameters of the refer-
ence generating loop.
The sum of the weighted array element outputs (auxiliary output) alone is
Vault) = xT(e)W(e)
and the signal component 1is
sau(t) = Agfgﬁt)/fi

This can be expressed in a form similar to (3la) with the component contributed by

the unweighted element deleted. Thus

lim s,,(t) = YN—I(-)/AN-I’

tro
and the power of the desired signal at the auxiliary output is

Soau = |YN-1(°)|2AN-1 (37)
The corresponding noise power is similar to (34a) with the contribution by the

unweighted element deleted. Thus

Noau - 0n2| Yn_l(’)lz (38)
and the signal-to-~noise power ratio
(84/8,), = Ay-p/o,2 = A2(N-1)/202 (39)
E-10




The array gain of the (N-1) unweighted elements is therefore realized; that

e ML PRI R SR T T T T

is, the weights adjust themselves to coherently combine the output of the weighted

elements and to provide maximum SNR. However, the resultant weighted output is

v

not coherently combined with the output of the unweighted element; the SNR of the

o, 1 oy ip

Yo

combination depends on the parameters of the reference generating loop and has a

3

value generally well below that of the combined unwef{ghted elements.

We now propose a wodified circuit which takes advantage of the foregoing to
provide constant SNR to the reference loop, but which also combines the weighted
and unweighted element jutputs to give a good final output SNR.

IV. Alternative Arrangement for Extracting the Reference Signal

Signal

The system arrangement depicted in Fig. 6. is proposed to overcome the

problem discussed above. Here the reference signal d;(t) is given by

d,(t) = a xT(t)W(t)e~3¢
where a and ¢ are gain and phase shift in the reference loop. Consequently,

Reap = E [x () x5(0)H(E)] ae” 3
= gW(t)ae—i¢ (o)

Instead of (18) the weight vector W(t) will be governed by

du(t)/de + 2k[(1-ae™19)g + o 21W(t) = -kaZp*p,

i vhere, P and Py and ¢ were defined in connection with (8), (9) and (14).
§ Following the same procedure as used earlier two equations in 1§_l(t) and
yﬁ_l(t) similar to (25) are obtained with the right hand side being

-2kA/T;:I72[6]. The solution to these equations is given by (27) with

E-11
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Crr(9) = - A (1 - acosp + ¢)

F "Ay-1 (1 - acos¢ + )2 + azsinZQ (41)
Cer(p) = - _A asing

i v2Dyoy (1 - acos¢ + )+ azsin2¢ (42)

The stability condition remains exactly the same (eqs. (30) and (31)). Even
though the final weights different from what they were in the previous system set
up, the output desired signal and noise powers remain as they are given by (37)
and (38), respectively. Therefore the SNR of the weighted element output, which
is also SNR fed through the reference loop, equals A2(N-1)/2q2.
a) Output SNR

Signal output in the configuration of Fig. 6 is taken from the point where
weighted and unweighted elements are summed, as shown.

The desired signal and noise power output at this point are given by (32) and

(35) respectively, with ar1(¢) and ai1(¢) used instead of qr(¢) and
a;(¢), and with

ar1(¢) = = Cry (8)/Dyy/A (43)
011(0) - = C11(¢)12AN-1/A (44)

Cr1(¢) and Cyy(4) are given by (41) and (42). Using appendix (A-5) we write

for the output SNR

2 2
Soy, - A201) el 0 * () + By(e) + 1
No 2047 ar12(#) + ag;2(e) + N-1
(45)
- Az(N-l) ( (2 - acos¢ + c)2+ azsian ]
Zonz (N-1)((1 - acos¢+c52 + azsin2¢)

As in the case of the configuration of Fig. 2, with the configuration of Fig. 6

the output SNR depends on the reference loop phase shift and gain. This ratio

E-12
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exhibits a maximum value when the phase shift is the smallest, ¢ = 0 (provided
that N > 3, or else for N = 2, A2/2qn2 < 2.5 1is necessary). If furthermore

a = 1 then for most practical cases the output SNR is approximately equal to

its optimal value AZ(N-I)/Zan (see Appendix A-6). Therefore, from the
point of view of output SNR the configuration of Fig. 6 is preferable to that
of Fig. 2.
v. Conclusion

We have here reported an analysis of the properties of an adaptive array
based on the LMS algorithm with a self-generated reference. Circuits hereto-~
fore proposed, analyzed, and tested had been reported to suffer oscillatory

weight instability when the reference generating loop shifts the phase of the

signal component of the array output. The scheme examined here is a variant

of the earlier scheme in which one array element is left unweighted and the
reference generating loop is operated without a limiter. As a consequence the
signal output of the reference generating loop is not fixed in amplitude and
may differ from the signal at the loop input in both amplitude and phase.

It was found that in this mode of operation, stable nonoscillatory weights

are obtained in the steady state provided certain mild conditions are satisfied on

the gain and phase shift of the reference generating loop. Two alternative ways

of driving the reference generating loop were examined. In the first, the sum of
all array element outputs were used to drive the loop. Here it was found that the
SNR entering the loop was highly variable being, under some conditions, nearly equal
to the SNR of a single array element. This result was not viewed as a desirable one
and an.alternative in which the reference generating loop was driven by the weighted
elements alone was then studied. Here a constant high SNR to the loop is obtained

and, under reasonable conditions of loop gain and phase shift, a high (though mod-

erately variable) signal output SNR.

E-13




Arrays of the sort here discussed are used where adaptive interference can-
celling is sought. The analysis reported here as well as that reported earlier on
other circuits with a self-generated reference signal deal only with desired signal
plus noise. Clearly, all candidate schemes ought to also be examined with inter~
ference present and the output ratio of signal to interference plus noise deter-
mined. This will undoubtedly be done. As an interim measure we have also
determined the component of signal power in the resi{due entering the array
control processor. The details are not reported here but the analysis showed
that the first circuit resulted in somewhat less signal power at this point
than the second circuit. The reason for concentrating on this quantity is
the expectation that the scheme generating a smaller signal power residue will
be a more effective interference canceller; the desired signal would then not
mask the interference and it would be the latter which mainly influences the

weights generated.

E-14




Appendices
A-1 By using the following information

p1(t) 1 3 Y-1(t)
- (E.1)
py(t) ;1 Y1 ()
(25) becomes

dpl(t)/dt7 rl-acos¢+c-jasin¢ 0 ! p3(t)
+2kAN-1

dpy(t)/de 0 l-acos¢tct+jasing| |po(t)

l1-acos¢tjasing
= ~2kAYAy_;/2 (E.2)
J(1-acos¢)+asing
(E.2) yields two disjoint differential equation in pj(t) and p(t). The
solution of which is given by
p1(t) =[p](0)-C;(4)] exp(-2kry_j(l-acos¢tc-jasing)t]
+ C1(¢) (E.3)
pa(t) =[p7(0)-C(¢)] expl-2kay_|(1-acos¢tc+jasing)t]

+ C2(4) (E.4)
where
Cl(¢) = - _A 1 - acosé¢ + jasing
72)\N-1 1 - acos¢ + ¢ - jasing (E. 5)

C,(9) = - —A __JQ1 - acos¢) + jasing
2\¢ ]
Y2\N-1 1 - acos¢ + ¢ + jasing (E.6)

E-15




Transforming back by using the transformation of (E.1l) we get

YR-1€¢t) = {{y§-1(0) = Cr(4)] cos(2kiry_asing)t
- (Yﬁ.l(O) = C4(¢)] sin(2kay_jasing)t}

exp{-2kAN-1(1 = acos¢tc)t] + Cr(¢)
C(¢) 1s given by (28).
A-2 From (33) and (34) together with (28) and (29) we write

b;2(s) = by2(9) + cby(4)
b12(¢) + bzz(o) + 2cbj(¢) + c?

ar(¢) =

2b;(9)by(¢) + cby(4)
b12(e) + b2(e) + 2eby(g) + <2

ag (¢)

‘where
bj(¢) = l-acosy
ba(¢) = asing

Thus
(5,2(0) = 2o 2 + c2(b12(¢) + by2(4))
b12(¢) + bp2(p) + 2cby(¢) + 2

ar2(9) + ag2(¢)

2¢b) (9)(b, 2(4) + b,2(¢))
b12(4) + by2(¢) + 2¢b;(9) + c?

b,2(0) + b,2(¢)

b12(¢) + b22(¢) + 2cby(¢) + c?
Also
35,2(¢) = by2(¢) + beby(g) + 2
zar(’) +1s= 2 p) 3
b1 (¢) + b27(8) + 2ebj(¢) + ¢
8o that

(2by() + ¢)?
b12¢e) + by2(p) + 2cby (o) + ¢

ac2(e) + ag2(¢) + 1 = ;

(E.7)

(E.8)

(E.9)

(E.10)

(Z.11)

(E.12)




Finally
a 2(¢) + a,2(s) + 2a () + 1

a 2(¢) + a;2(p) + N-1

i} (25 () + )2
N(b;2(p) + by2(e) + 2cby(¢) + c2) = c(2by(9) + ¢)

- (2 - 2acos¢ + c)2
N((1-acos¢+c)? + azsin¢) - c(2-acos¢tc)

wvhere in the last step we used (E.10) and (E.1ll).

A-3 To examine the dependence of S,/N, on the reference loop phase shift, of

the circuit of Fig. 2 we rewrite (36)

So(a,¢) = 1 ( (2 - 2acos¢ + c)2 )
N, ¢ N((l-acos¢+c)2 + alsinz¢) - ¢(2-2acos¢ + ¢) (E. 14)

where ¢ = Zonz/Az(N-l)
Setting ¢3S4/No(a,$)/3¢ = 0, yields the equation
2(2 - 2acos¢tc)2asing[N((l-acos¢tc)2 + a2sin2¢) - c(2 ~ 2acos¢tc)]
= 2(2 - 2acos¢+c)2[N(2(1 ~ acos¢tc)asing + 2a2singcosy) -2acsing)
=0 (E. 15)
The stationary points, therefore occur under one or more of the following
conditions.
1) 2-2acos¢y + ¢ + 0 (E.16)

or, acos¢ = (c+2)/2. This condition cannot hold for a < 1 and c # O

2) 2asing =0

or, ¢ =0 sincea # 0 (E.17)
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3) 2N((1-acos¢+c) + a2sin2(¢)) - 2c(2-2acos¢tc)

= (2-2acos¢tc) (N+e(N-1))
which implies

2-2acos¢tc = 2N(1-aZ+c)/ (McN=-c) (E.18)

The values of So5/Ny at these poilnts are, respectively

1) Sg/Ng = 0

2) s, /N, =1 (2-2a+c)?
€ N(l-a+c)? - ¢(2-2a+c)

- AZ(N-I) (2-2a+c)2 (E.19)
2 gp2  N(l-at+c)® - c(2-2a+c)

It i{s possible to show that if we choose a < 1 for this case; (i.e., ¢ =0),
then the secund factor of (E.19) decreases with c. Therefore S,/N, 1s upper

bounded by

s /. < AXN-1)  4(1-a)?
o’"o 2 2
20q N(1-a)

- 2A2 (N-1 + (4=N)(N-1)) (E.20)
onz N

The upper bound is larger than AZ(N—I)/Zon2 only {f N < 4. It equals

Alezonz when N = 2, and approaches Azlzaz.k for a very large N

3) so/No - Az(g'l) [AN(l-a2+;)] (E.21)
20p (N+cN-c)

Again, it is possible to show that if we choose a < 1 then the second factor of
(E.21) decreases with ¢ and hence

So/N, < [a2(N-1)/20,2]4(1-a2)/N

The upper bound can be greater than AZ(N-I)IZon2 only when N < 4, and
equals Aznlzonz when N ¢ 2. This upper bound is attained when c is

very small. To conclude we notice that the output signal-to-noise ratio depends
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on ¢ and {t {s less than AZ(N-I)Izonz for most cases of practical interest.

A-4 To examine the dependence of solN° on the reference loop gain in the cir-
cult of Fig. 2 use (E.14) to write
3(Sy/Ny)/3a = 2[2-2acos¢tc)(~ccos$(N+Ne-c=2)
+ 2a(cos2¢$(N+Nc-c)-N-Nc/2]
Stationary points occur under one of the following conditions
1) (2-2acos¢+c) = 0 (E.22)

or a cosd = (c+2)/2. Again, this is not valid for a < l and ¢ # O

2) a = __—ccosp[(N-2)+c(N-1)] (E.23)
[(l-cosZQ)(N+cN/2)+(c-cN/2)cosi;]

This point is a maximum or minimum depending on whether cosz¢ is less or greater
than (N+Nc/2)/(N+Ne-c) respectively. But

1/2 ¢ MNe/2 ¢ 1 (E.24)
M+Nc-C

for N > 2 and any c. Therefore for cos¢ = 1, the minimum point occurs at
a =2 1f we assume ¢ is small. From (E.14) for ¢ = 0 and a =1 S /N, = AZIZonz,
vhile for ¢ = 0 a = 0 S_/N_ = A2(N-1)/2q,N.

A~-5 Using (43) and (44) together with (41) and (42) we write

bl(O) +c
ar1(¢) - 7 3 2
by “(¢) + b°(¢) + 2cby(¢) + ¢

by ()

ag1(¢) = 2°¢

b12(¢) + b22(¢) + 2cb(¢) + c?

where b1(¢) and by(¢) were defined in (E.10) and (E.11). As in Appendix A-2

we now have

2 2 1
611(0) + 011(0)-
b1 2(¢) + bp2(¢) + 2cby(¢) + c*
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Also
(b, (@)+e) (b (4)+c+2) + b3(4)

b 2(¢) + by2(¢) + 2¢by(¢) + <2

2%l(¢) + 1=

so that
3 aZ,(9) + af, + 2a_,(¢) + 1
(5;(9) + c+1)2 + b3(9)
(bf(¢) + b5(e) + 2cb (p) + c*
Finally

a2, () + af (¢) + 2a,,(e) + I

a2, (¢) + af (¢) + N-1

(b3 (¢) + +1)? + b§(¢)

(N=1)[b£(¢) + bs(4) + 2cby(¢)+c?] + 1

(2-2acos¢tc)2 + a2sin2y
- (E.25)
(N—l)[(l-acos¢+c)2 + aisin2§] +1

A-6 To examine the dependence of (S,/Ny)) on the reference loop phase

shift ¢ of the circuit of Fig. 6, we write (45)

! (s,/N,) (a,¢) =1 (<2'a°°8¢+c)2 + a®sin’y

¢ (N-1)[(l-acos¢+c)? + aZsinZg] + 1

Hence c3(S,/N,) (a,4)/3¢ = O implies that

2(c+2) asing[(N-1)((l-acos¢tc)2 + a2sin2y) + 1]

-(c+l)(N-1)asin¢[(2-acos¢+c)2 + azsin2¢] =0 (E.25)
E After some manipulation one can show that (E.25)is equivalent to
[ 2asing[(N-1)a2 = N(c+1)(c+2) + (c+2)2] = 0 (E.26)
H A solution to (E.26) is given by
i asin ¢ = O
! which implies ¢ = 0 since a #+ 0 (E.27)
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For this value to be maximum it is necessary and sufficient to have
a2 <[N(c+1)(c+2) - (e+2)2]/(N-1) (E.28)
The right hand term of (E.28) is increasing with c. To make this term greater
than or equal to one and consequently (E.28) to be satisfied for every a < 1, it
sufficient to require

3 ¢ N+ (N-2)(c2+3c) + 2 + 2¢ (E.29)

This is satisfied for every ¢ 1f N 5 3 or when N = 2 provided that ¢>0.4
(or A2/3o§<2.5).
The value of (So/Ng)] at ¢ = 0 is given by

2
(s./8.), =1 [—(2atc) ]
ool "¢ (8-1)(1-a+e)2+1

If ¢ is small enough then

(S4/N5); = Az(g“) [ (2-a)? —] (E.30)
202 (N-1)(1-a)>+1

If ¢ 18 very large then
(5,/N,); = A2/202 (E.31)
However, c large is not a practical alternative. 1f a {s close to unity then
(S4/Nyy) = (A2(N-1)/252)[ (1+c)2/(N-1)eZ+1)]
(N-l)c2 - (Zan/Az)zl(N-l) which is much smaller than unity for reasonably
large N and practical value of noise-to-signal power ratio of a single array
element, Therefore (So/Ng)1 is approximately equal the optimal signal-to-noise
ratio AZ(N‘I)/ZO%
To conclude we notice that the output signal-to-noise ratio of this config-
uration also depends on the reference signal loop parameters, a and ¢. However,
for ¢= O and a = 1 the output signal-to-noise power ratio approaches the optimum

value AZ(N-I)IZag for most of the practical cases.
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d(t)
dl(t)
E[ ]
e(t)

List of Symbols - Appendix E

desired signal amplitude

constant dependant on the limited level and filter
attenuation of the reference extraction loop

defined to be oﬁ/xu_l

reference signal

reference signal for alternative arrangement
denotes expected values

minimized error signal for LMS algorithm
identity matrix

gain constant for LMS algorithm ‘
number of elements

noise process vector (1 x N)
noise power at array output

noise power in v
au

noise process at main element

input signal's phase vector (1 x N)

phase at main element

unitary diagonalizing matrix

input signal autocorrelation matrix (I x N)
input-reference signal cross-correlation matrix (N x N)

input-reference signal cross-correlation matrix for
alternative arrangement (N x N) :

output desired signal power
desired signal at array output
desired signal at array output
signal component of vau
(Cont inued)
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List of Symbols - Appendix E

(Continued)
T v(t) array output

va(t) real part of V(t)
vau(t) sum of the weighted array element outputs
wt(t) array weight vector (1 x N-1)
wiI(t) weighting factor for in(t)
wiQ(t) weighting factor for yiQ(t)
xt(t) the system's input vector (1 x N)
yi(t) signal at ith antenna element

‘ in(t) equivalent to yi(t)

1 yiQ(t) Hilbert transform of yi(t)

; yN(t) signal at unweighted main element

| oy incoming phase of input signal at the 1P element

; rfe) Q' w(t)

| uncoupled complex array weight vector (1 x N)
Yl(t) elements of Ft(t)
Yir(t) real part of the ith uncoupled weight Yi(t)
Yit(t) imaginary part of the ith uncoupled weight Yi(t)
A uncoupled signal autocorrelation matrix (N x N)
Ac free space wavelength at frequency ®,

3 An-l the only nonzero element of A

i oﬁ noise power present at each element

arrival angle of input signal
narrowband center frequency of input signal
| | denotes magnitude

(Continued)

y ¥
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e (Continued)

denotes Hilbert transform
s * denotes conjugate
t denotes transpose

denotes conjugate transpose
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Effect of Interfefence on the Behavior of

an LMS Adaptive Array with Reference Signal Loop

Abstract

A phagse shift in the reference loop extraction scheme of adaptive arrays
utilizing the Widrow LMS algorithm has been shown to cause cycling of the array
weights in an interference free environment. Under the same conditions a com~
pensation scheme proposed by Bar-Ness [3] was shown to force the weights to
converge to a steady-state value. This paper investigates the compensated
scheme in a multiple and single interference environment. For the case of
single interference, it is shown that the array weights of the compensation
scheme will converge to a steady state counstant value while those of the uncom~
pensated scheme will continue to oscillate.
I. Introduction:

Recently adaptive arrays have been attracting much attention. One reason
is that these arrays can be used to null an undesired signal coming from a
different source location than a desired signal. By doing this, adaptive ar-
rays can be used as automatic beam steerers as well as iaterference cancellers.

One popular scheme used in adaptive array systems utilizes the least mean
square (LMS) algorithm proposed by Widrow et al [1]. The scheme, however, re-
quires a reference siznal wbich correlates with the desired signal to be ex-
tracted. Obviously, the reference signal cannot be available apriori to the
receiver and must somehow be extracted from the incoming inputs to the system.

One way of extracting a reference signal is by using a narrowband signal
while having broadband interference. Then by use of a narrowband filter the
interference is attenuated while the desired signal passes through and is used

as a reference signal. This condition can be met by use of spread spectrum
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methods. By this method, the desired signal's spectrum is spread by multiply-
ing the signal by a pseudo-random code at the transmitter. Then at the receiver
the incoming signals are multiplied by the same pseudo-random code. This
process despreads the desired signal making it narrowbaad and at the same time
spreads the interference making it broadband. Thus the reference signal can

be extracted by use of a narrow band filter.

One problem with this scheme was first shown by Compton and DiCarlo [2].
They demonstrated using an interference free input that a phase shift introduced
by the narrow band filter in the reference signal extraction loop causes the
array welights to cycle. This work used a single array element and, DiCarlo {4]
later extended the analysis to an N-element array and was able to attain the same
results., Here a basic problem lies in the fact that the reference loop phase
shift is a function of the incoming signals center frequency and cannot be known
apriori. Thus, it cannot be compensated for all incoming signals, and under a
wide range of nonstationary enviroaments.

With the weight cycling problem in mind, Bar-Ness {3] added an adaptively
controlled complex weight into the reference loop (Fig.5). This complex weight
was shown by Bar-Ness to effectively compensate for the reference loop phase
shift. Bar-Ness also showed in his analysis that with an interference free
input this extraction scheme causes the array weights to coanverge on a steady--
state value.

It is the purpose of this paper to examine the effect of interference on
Bar-Ness's results. This first will be done for the general case of a multiple
interference environment, then we consider the special case of a single inter-
ference.

For the multiple interference case it is shown that the reference loop

phase shift is compensated for, however, a general condition for weight conver-
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gence has not yet been found. For the single interference case a sufficient
condition for convergence is found. The uncompensated case of Compton's array
will also be examined and it is concluded that the existence of interference
will still result in weight cycling.
II. Array Element Weight Controlling Equations:

A basic schematic of the narrowband adaptive array processor is shown 1ia
Fig. 1. The incoming signal to each of the N antenna elements is split into
its in-phase (Xj1) and quadrature phase (xiq) components giving 2N inputs to the
system. Each input is weighted by a real factor wiy or wjg and then summed
to produce the array output v(t). An error signal e(t) 1is produced by taking

the difference between a reference signal d(t) and the array output v(t).

The weights are controlled such that the mean square of the error (e2(t)) is
ninimized.
! Following the results first made by Widrow [1] the weights are coatrolled

according to the equation:

| d
' v k3 [eZ(O)] (1)
dt vy

where k is the main feedback loop gain, and the overbar stands for expected value.
Realizing that we represent the array output analytically be
v(t) = XE(t) w(t) (2)
where:

wh(t)

{w (), wylt),ens, wy(t)] (3
wi(t) = wig(e) + Jwyq(e)
XE(e) = {X,(), Xp(t),eeq, Xy(E)} (4)

ERLR. 'Y

Xg(t) = X3p(t) + §X4q(¢)

t ~ indicates transpose
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Using (2) we can define the error signal as
e(t) = a(t) - v(t) = d(t) - xt(e)w(t) (5)
Substituting (5) into (1) and evaluating the partial derivative we get from

Widrow [1]

dw(t)/dt = 2k (x*(t)e(t)) (6)
= 2k (x*(t)d(t) - x*(t)x*(t)w(t)) €))

or

dw(t)/dt + 2k R, w(t) = 2k Ryq (8)
where:

R, = E[x*(t) x*(t)] (9)

Rgq = Elx*(t) d(t)] (10)
and E[ ] denotes the expected value.

Notice that Ry Is the input auto correlation matrix and Ryq is the input-
reference signal cross correlation matrix. Also, using eq. (6) we see that
the feedback network of Fig. (2) can be implemented as a weight controller.

For the case of one continuous wave (CW) signal and m—-interference signals
arriving at angles y and X(j(i=1,..m) respectively with reference to broadside
(Fig. (3)), we can represent the input vector of eq. (4) as

m
x(t) = A/VZ Pg + § By//7 Pr, + N(t) (11)
1=1

where, N%(t) = [ny(t),ny(t),..,ny(t)] 1s the noise process. A is the desired
signal amplitude. By is the amplitude of the 1t fnterferer. And assuming

a nonlinear array

pst = e-jps(t)ll, e-Jaz, e-j°3, e o o o e-janl (12)

- -jbg,  -3b -3b
JTIn(e) ] 1 by, by

N e o o e . e ] (13)

t-
PIi

where aj = 27Lj/Ac 8in y and byy = 2xLy/Ac sin Xy, and pg

and pj are the incoming phases of the complex envelope of the desired signal
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and the ith iaterferer respectively. Lj is the distance between the first
and jth input element. Ao 1s the free space wavelength of the centerband
frequency of the input.

Using (11) in the definition of the input autocorrelation maxtrix (Ry)
and assuming that the noise, signal and the m-interferers are uncorrelated we

can say that

n
2
=9 + ] + o1 14
Rx s 121 Ii n (14)
where og is the noise power, I is the identity matrix, and L3 and Qliare
]
defined as
2
o, = _tzz_p;pg (15)
B .
¢y = — PP 16
; I 72 Iily (16)

Using the definition of Ry (14) in (8) we get
T 2
dw(t)/dt + 2k(eg + § 011 + opD)w(t) = 2kR , Qa7
i=]

i Equation (17) describes the controlling equation for each of the element weights.
Using the scheme of Fig. (4) to extract a reference signal (d(t)) from the
array output (v(t)), and assuming wide band interference with a narrow band de-
sired signal, it can be easily shown [2] that the reference signal is given by
8(P§w(t))
d(e) = ___—__ e~J¢ (18)
N |pEw(e) ]

where, a 1s a constant depending on the limiter level and filter attenuation of

Fig. (4). ¢ 1s the phase shift introduced by the reference loop and is depen-

R PPN

dent on the frequency of the incoming desired signal.

Investigating the system described by equations (18) and (17) with no in-

tecferences (011- [0]), DiCarlo [4) demonstrated that the weights would os-
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cillate at a radial frequency dependent upon the reference loop phase shift (§),
the signal and noise powers, the feedback loop gain (k) and the number of array

elements.

II1. Phase Compensation Scheme

To contend with the problem of weight cycling caused by the non-zero phase
shift of the reference loop extraction scheme (Fig. 4), Bar-Ness [3] proposed
the adaptively controlled phase compensation scheme of Fig. (5). This scheme
introduces a complex weight wy to the reference extraction loop, where w, is
adaptively controlled so that it minimizes the phase difference at point 1 and 2
of Fig. (5). As seen this controlling is done by the use of an integrator and a
multiplier which together form a correlation loop between ej(t) and the orig-
inal reference signal now renamed y(t). From Fig. (5) we see that ej(t) is the
difference between the compensated reference signal and the array output v(t).
Thus as the correlation loop minimizes the mean-square of e;(t) the phase

difference between the reference signal and the array output is also minimized.

Analysis of Phase Compensation Scheme:
Following Bar-Ness's analysis, it is seen from Fig. (5) that the governing

equation for the added complex weight w.(t) is

dw_(t)
dt

= - 2k y*(t)e;(t) (19)

where from (18)

a(Ry w(E)

y(t) = —_____ e”J¢ (20)
[Pgtwle)]
and from Fig. 5.
e)(t) = cy(t)w (t) - xT(tIw(t) (21)

Noticing that the newly defined reference signal d(t) is equal to the sum of
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the product [yj(t)w,(t)] and an amplitude ' amited version of [y (t)w.(t)] we

get
y(et) w.(t)
d(e) = t) + b L 22
(t) = y(e)w.(t) 1 T5(6w (D) (22)
But |y(t)| = a which is the first limiter level. Thus (22) becomes
b
1 Vr(t) (23)

d(t) = y(¢t) [wt(t) + :I-;:(T)T

Now that the reference signal (d(t)) is defined for our system we can use it
to describe the input-reference cross correlation matrix (Rxd - E[x'(t) d(e)]).
Substituting from (23)

bl Wr(t)

APRTS) 1] (24)

Reg = E[x"(£) y(£)[w (e) +

Substituting for y(t) from (20), (24) becomes

t (25)
PSW(t) [a wr(t) + blwr(t)]e-j¢]

= E[x*(t)
Fxd IP:w(t)l lwt(c)l

Using the assumption that the incoming signals are uncorrelated with one ancther
we see that

Elx"(£)PL] = ap’pt = Z o,

/2 A (26)

Using this in (25) we get

Ry = "2 (2w (o) + 21E(E) -0 (27
A ptwo)| |w (o)

Now having Ryq defined by (27), the element weight equation (17) becomes

m
dW(t) k + 21 t) =
ac % L eyt ol WO (28)

2/2k [ Osw(t) la w_(t) + bl"r(t)]e-j¢
TS T lw (t)]




Having the element weights defined by (28) we turn our attention back to
the phase compensation weight w.(t). By substituting equaiton (21) into (19)
we get
dv,(t)/de = -2k E[y*(£)(cy(tw (£) - xT(t)w(E))] (29)
But y*(t) y(t) = |y(t)|2 = a2 (292)
And by using the definition of y(t) from (20), (29) becomes

dw_(t)/dt = =2k [caZw () - E{(aPgw"(t)/|REw(t)|)xE(e)w(t)ed?)

\ (29b)
where: stands for transpose conjugate
Since P;w*(t) is a scalar we can see
Pow (L) = w ()P, (29¢)
and using (16) we can rewrite (29b) as
dw (t)/de = =2k _[ca?w (t) = a/Z/A (w'(t)egw(t)/|piu(e)|red?]
(30)
or
2/7ka w' () w(t)
dw (t)/dt + 2k ca’w (t) = -l 8 ___led?
A t
|pgw(t)| (30a)
Using the fact that ¢g and oli(inl to m) are all of rank 1 and complex
m
Hermetian matrices, we see that 2 011 1s of rank < m and using Appendix A we

i=]
can find a unitary matrix Q such that

AS-O'OSQ- —Xl..-O—

. (31)
m -L_ _ 0

A1 = Q' Z ¢1. Q= [lag§. - « - 0 . (32)

1=1 1 . .

-._ * L] L) ._ ml x ﬁl L]

L) . L] L] . . L ] L[] * . .O

where

ai4 = positive, real i=] (33)

5 = que-inj




Premultiplying (28) by Q' we get

m
19CE) 4 gk q'(e, + § 0p. + o21)Q Q' w(t
= Q' (&, 121 1, * oal)Q Q' w(e)

(35)
» - 2v2k Q 90 Q w(t) [a w.(t) + bl“r(t)]e-jo
r
R A Jetw(o)] lweCe)|
: Defining T(t) = Q'w(t) = [Y], Y2,ee Ynl (36)
% Using (31), (32), and (35), (36) becomes
' dr(e)/de + 2k[Ag + Ay + o2IIT(E)
- 272k As r(e)[a w (t) + M]e‘do (37)
A ptw(o)] [w (0)]
{ Evaluating |P§w(t)| we get
E: |efw(e)| = [[RSw(e)] ' [REw(£)1]1/2 = [wr(e)plpLu(e))l/2
(38)
or
L legu(o)] = (w'(0)a @'pgeie @'w()1V2 = (1)L o, r(e)]!/2
3 A
= (39)
3 ! vZ (' 1/2
: = "5 M (Oag 18] /
i Using the definition of Ag [(31)] and (36), (39) becomes
| lpgwe)| = Y2 ([y) | Apt/2 Ly, 137 (40)
i
V% And (37) becomes
i dr(e)/de + 2k[Ag + Ap + o21] r(t)
‘ b
1 =- zk::AL___ rie){a we(t) + _lXESEZ]e‘ﬂO (41)
| Al lwe(e) |
From (31) and (32) we see that (41) can be written in the form
dy Ct)/dt + 2k o2 y (t) = 0 1=M442, toeoo N (42)
! w1
i dy,(e)/de + ZRIJZlqinJ +ol vyl =0 1e2, ... owel (43)
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okl
dy (t)/de + 2k[JZIquYJ +(y + oﬁ)yll

Yl(t) blwl‘(t)

- 2k /3] | ) law,(t) + Je~3¢ (44)

Iy (o)} |we(t) |
Turning our attention back to the reference loop weight we(t), we see

that by substituting (40) into (30) and using (36) we get

r r
dw (t)/dt + 2k calu (t) = 2a k, DCORTCE) 59 (45)
ly1lv21
or
dw (t)/dt + 2k calu (t) = 2a k. /A |y, ]el? (46)

At this point it is noticed that eqs. (42),(43),(44), and (46) are a set
of N-complex nonlinear differential equations which describe the response of the
system weights. Looking at (42) we see that [N-(mt+l)] of the weights will

exponentially decay to a steady state value of zero. Or solving (42) we see that

-2ko§t
v1(t) = v4(0) e

1=M2, ... N (47)
To solve for the remaining M+l weights plus the complex weight wp(t) we
define:

-38,(¢)
v4(t) = Py(t)e o

(48)
w.(t) = P (t)ed¥(E) (49)
where P{(t) and P.(t) are assumed non-negative. Using (48), (49), along with

(33),(34) we can rewrite the system yeights equations [(43),(44),(46)) as

- m+1 ~j(83(t)+p14)
d[P;(t)e jel(t)l/dc +2k[ ¥ q13 Py(t)e . . (50)
i=1
+ oﬁpi(c)e-Jei(t)l =0 122, ... M4l
-ie w1 - +
d{P (t)e 10108 e+ 2 ) qfspj(c)e (8y(t)+pyy)
i=1
2 =jo1(t) __=jej(t) - (o+v)
+ (A, + 0,)P (t)e ] = 2k/)je {aP.(t) + b;le
(51)
F-10
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dle (£)e™IV(E) ) /ae + 2k ca®p (£)eIV(E) = 24k /XTP| (t)ed?
(52)

Evaluating the derivatives of (50), (51), (52) we get

dP, (t) -j6,(t) -j0,(t) de,(t) =(85%p¢s)
b § 1iv-7_ i i i
— 3P, ()e (=201 + )j q1j Py(t)e O5v1y
+ dzPl(t) jei(t)] = 0 1-2, [ XX N !H'l
(53)
dp - - d wtl -
4Py (e) 30, (8)_ 1P (t)e 301(0),40188) ) | o AAGE (0g01y)
dc a jop 1373
-jo,(t
+ Oy + aDp(e)e 149,
= Zk/rI[e-jel(t)][aPr(c) + blle-J(¢+v)
(54)
stéfle’JW(t) -jP, (c)e‘JW(t)[_ift)]+2k caZe _(e)e I¥(t)
= 2ak, /P (t)el? (55)
Multiplying both sides of (53),(54) and (55) by ejei(t), ejel(t)and eJw(t)
respectively and equating the real and imaginary parts of each we get
mtl | 2
dP,(c)/de + 2k[jzlqiij(c)cos(ei = 85™ pgy) ¥ ogPy(t)] = 0
1 = 2’ L] . . H+l (56)
o+l
daP (t)/dt + 2‘([ z qu j(t)COS(el ej- plj) + (Xl + otzl)Pl(t)]
j=1
= 2k/A|[aPp(t) + bylcos (p + ) (57)
dP_(£)/dt + 2k ca’P (&) = 2ak /AP (t)cos(y + ¢) (58)
de,(t)
P (t) 1 21:[j§lqi:| Py(c)sin(ey - 8y - pg4)) = O
1 =2, .. .Ml (59)




de, (t) wtl
" - 2k[j§lquPj(t) sin(0; - 85 - py4)]

P (¢c)

= 2k/A1[aPp(t) + bj] sin(p + y)

Pr(t)%¥££l - 'zakr/i;bl(c) sin(¢ + ¢)

(60)

(61)

Looking at equations (58) and (61) we see that the compensation weights (w (t) =

Pr(t)e'jw(t)) controlling equation is not affected by the interference. Thus

we get from Bar-Ness [3]

cot [¢(t)+yp(t)] =

Also, 1f Pj(t) is bounded away from zero, and assuming it is positive then

t
Pr(O)cos(¢lo+¢0)+2krafi;foPl(t)exp(Zkrcazr)dr
P¢(0) sin(¢j09 + wo)

for sufficiently large t we have

¢(t) = -y(t)

(62)

(63)

Thus the refernece loop phase shift is compensated for and the weight equations

(56), (57), (58), (59), (60) and (61) reduce to

dpl(t)
dc j-

= 2k/xplaPg(t) + by]

dp, (&)

wtl )
L= 2,...M+1

drP.(t) 2
d—t-r— + Zkrca pr(t) = Zakriklpl(t)
de, (t) ]
Pi(t)dti - 2k[j§1q'{JPj(t) sin(9; - 85~ pyy)] = 0
1 = 2’...H+l
de, () m+]
Pl(t)dtl - ZKIjZIqYJPJ(t) 31“(91 - ej- OIJ)] =0

P ()dWE) ~ o
dt
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(67)

(68)
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At this point we have shown that the added weight w,.(t) effectively compen-~
sated for the reference loop phase shift ¢. However, we have not as yet been
able to find a general solution for the weight equations (64-69). In the next
section we Investigate the special case of a single interference and give a
sufficient condition for convergence of the array weights.

IV. Special Case: Single Interference in an N Element Array

With the number of interferers (m) reduced to 1 the ianput vector (eq.(11))

becomes

x(e) =4 e, +Bp +N) (71)
V2 V2

where A and B are the amplitudes of the signal and interference respectively.
Py and Py are their respective direction vectors and are defined in equa-
tions (12) and (13).

Following the derivation for the multiple interference case we see Lhat
we must diagonalize the desired signal autocorrelation matrix (0'-%?P:P:)
as in (31). Also, we must use the same unitary dlagonalizing matrix Q in order

2
to transform the interference autocorrelation matrix (01‘% P;Pf) to the

form of (32) where m=1, Using the definitions of Appendix A (AS5), let

v
Q' - : 72)
v

where: v| 1s the eigenvector corresponding to the only non zero eigenvalue of &,
vy = vqn are the eigenvectors corresponding to the n-l1 szero eigenvalues of ¢,
' denotes the transpose conjugate of the vector

By inspection we can see that a proper choice for v; 1is:

Vl' - Pst/IP.I = l/m [l Q-jcz soee .-jcnl (73)

F-13




Using this knowledge, we get from (31)

As = Q' 9.Q = A% Q'P*pto
8 2— 8 S

— v 1
V'z ejaz
= AZ : : . . .
7 L] L] L ] L o
V'n ejan L] * L)

(75)
Combining (72), (73), and (75) we see that
A 0. .
Ag = _ |0 O (76)
f 0 "o
where from Appendix A (A4) we know
? L an

' 2

Using Appendix A we see that we now can place a restriction on Q such that

t [ 2 ok 2 &
| Ay = Q ¢;Q = g_ q pyrtq = §~ 2"zt (78)
i Tann a2 |0 0"
; q21 q22 0 . (79)
i 0 G [0 .

_ O L) - . . . L . ] . L] 0

where:
] 28 = (< P]> <vpPD> <VPD> « 4 . . <V PP (80)
{
From Appendix A we know that this can be accomplished if we let v; and v; 1

span the plane defined by P: and P; and making the other n-2 eigenvector

orthonormal to the space spanned by v; and vy. Thus using the diagraa below

IR - W,

F-14
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we see that

* *
PI - <PI,VI>V1

V2 * *
|PI - <PIV1>V1|

Using (79) and (80) we get

2 2
C B3 ot o 12 o B ot o2
qll E_I<P1’vl>l EEI<PI’PQ>I

where we have also used the fact that |P‘|2 - P:P: = N.
Furthermore, using (79) and (80) ian conjunction with Appendix B we get

2 2
o B ¥ 2  NB2 _
922 * - I<PL, vy>l 2~

2
* - B * *
qu = qlz E— (PI, V2> <Vl, PI>

From Appendix C we know that <P;.v2> is real and thus (84) 1is

seen as

2 » *
lagy | = lajzl = %— <PL,vp> |<v PP

*
/aqy = /qy3 = /arg<vy,Pp>

Motlag that we can make Ay a real matrix if we eliminate the angle intro-

(81)

(82)

(83)

(84)

(85)

(86)

duced in (86), by inspection using (79) we see that we can define a new Q such

that

Q = A'Q'

(87)




where

T1/arg(<vy,Py*>) 0

1 (88)
A= 1

Now using Q' we define Ay as

Apl = Q91 Qq

“qull  9nI2 . -
= | qn21  4n22 (89)
0 0
where
2
- - B *,)2
W11 " Ay "5 [<Prapg 7> (90)
2 2
- _B *# 12 o NB? _
9n22 = 922 2—""2"’1 > =~ (91)
Qn21 = 9a12 = 7411922 = la12l (92)

Obviously An; as defined in (89) 1s a positive real symmetric matrix.
Also we realize from (75) that

Ans = Qn'9gQn = Q'0gQ = Ag (94)
As we did in the multiple interference case we let I' = Qq'w(t). And, using
(90)-(94) we see that one interference causes the multiple interference system's

weight eguations (64)-(69) to become

dP, (t)

+ 2k[(q“ + A\ + 0'2‘)?1("-) + 'Iqllq22 COG(OI'GZ)PZ(C)]

= 2k /xjla Pp(t) + by] (95)
dP,(¢t) J——
+ 2k[/qllq22 P, (t) cos(oy(t) - 8;(t))
+ 2y + 0PH(E)] = 0 (96)
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dp

dc'(t) + 2k cap (t) = 2a k. /A] P (t) (97)
del(t) oo

Pl(t)dt + 2k{ /qy,5q;) sin(e,(t) ~ 0,(t))Py(c)] = 0 (98)
do —_—

Pz(t)dtz(t) - 2k[ /q11122 '1n(92(t) - Ol(t))Pl(t)] =0 (99)
d

P (t) AL (100)

t

Trying to analyze the convergence of §1(t) and 62(t) we can preamultiply

(98) and (99) by Pp(t) and Pj(t) respectively and substract to get
d(0,-9;) —
PRy (e)—2 L' 2k V251957 [P 2(6)+2,2(E)] sin(e,-8,) = 0  (101)

or

a(0,-0 2k P,2(t) + P,2(t)
(0701), , 2e/ap192[B1 (0D + Bp (O] 6,0y
dt Py(t) Pa(t) (102)

Assuming that Pj(t) or Py(t) cannot attain a valve of zero over a finite time in-
terval then the phase difference 83(t) ~ 9j(t) will coaverge on

8a(t) - 8y(t) = x. (103)
Using (103) in (98) and (99) we get

Pa(t) doa(t)/dt = 0 or dey/dt = 0 (104)

Py(t) doj(c)/dt = 0 or de /dec =0 (105)
It can be shown from (95), (96), (97) by inspection that in fact Pj(t), Pa(t),
Pp(t) can never attain a steady state value of zero and thus equations (100),
(104), (105) hold.

At this point we have shown that the phases of the weights y(t), 6)(¢t),

92(t) converge on a steady state value. Now using equation (103) 1a (95),

(96), and (97) we get a linear set of equations for the magnitude of the weights.
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dP, (¢t) 2 ———
1 + Zk[(qll + XI + Un)Pl(t) - /qlquzpz(t)
= 2k /ilaP(t) + bj] (106)
dp,(t) S 2
:c - 2k[ Ya3;a5.P)(t) + (a5 + aglPy(t) = O (107)
dp.(t) —
r 2 -
e + 2k ca®P.(t) = 2ak, VA P;(t) (108)
or
. 2 s— ——
P (t) =2k[(qyy + A} + 0p))  +2k[ /qyq5;] ~2kav) Py (¢)
. S ——— 2
By(t) -2ak_ /A 0 -2k ca? | | By(E)
- - - I J
2k/A] by
+ 0
0 (109)

The eigenvalues of the matrix in (109) can be obtained by solving the equation
2 2
(i + Zktcaz)[(x +2k(A) + o, + q; DO+ 2k(xy + Op = qll))
- 4k?q;; Oy - qpp)]
2
- 4kk A jaZ(d + 2k, + op - qpy)) = O (110)
when we used the fact that ¢ = EEE -q and defined )\, = E!E. (110) can be
22 2 11 2 2
rearranged to get
2 2
O+ 2k(hp + o)) [(A + 2k ca®)(n + 2k(x) + op)) - 4kk,Apa?]
- 4k2q 1A, (A + 2k a%(c-1)) = 0 (111)
(111) can be looked upon as an equation for the loci of the three eigenvalues

when q)| varies from O, when the interference direction is orthogonal to the

desired signal direction, to a value equals )j, when both direction are the

F-18




2
same. Notice that with no interference iy = !%- = 0 then by (82) q;y is also

zero and (111) reduces to

(A + 2ka2) [ + 2kgeal)(A +2k(A; + 02)) - bkkprja?] = 0 i)
112

This is exactly what we had in [3]. Also if for the orthogonal case qi; = 0 but
A2 # O then from (111)

(A +2k(3y + 0D [(A + 2k, ca)(h +2k(A; + 02)) - 4kk 2 a2] = 0 (
113)

so that for this case the interference has the effect of changing one of the
2
2icenvglues from -Zkoi to - 2k(x2 + an). Oune can easily show thai the

other two eigenvalues an unconditionally real and they are both negative when

cry+ o2)
A

Appendix D).

> 1. For q;; = A, we get after rearranging the terms of (111). (See
11 2

2
(A + 2ko2) [(A + 2k ca®)(A +2k(A) + Ay + 02)) - bkk A a2] = 0 (
114)

. Again it can be easily shown that the two eigenvalues that correspond to the

second factor are unconditionally real and both are negative if
: c(xl + xz +
| M

g
ny) >1 (115)

The condition 1is obviously easler to satisfy than the previous condition we

obtained with q)1 = 0. Comparing (113) with (114) we notice the difference

in the second factor of the first term in the square parenthesis where we
have A] + A2 representing the sum of power of both the interference and
the design signal instead of A represeating the power of the desired signal

only. The first terms in the parenthesis remain unchanged since the reference

P, PP

generating loop is not affected by the interference.

In order to get an idea of what happens to the eigenvalues as the inter-

ference direction varies between the orthogonal and colinear directions of the

e aoatRER .

desired signal we can plot the root loci of (111) keeping in mind that qp) f

. F-19
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increases from zero to Ay as the direction of the interference moves from an or-
thogonal to a colinear direction. Doing this we can prove that the eigenvalues will

c(x1+ az)

always have a negative real part as long as A 0> 1. The proof is given in
1

Appendix E.

The steady state vaiues of the weights are derived by setting the left-

hand side of (109) to zero and evaluating. Doing this

— —

P (t)
lim Pz(t) = Wi =L Z 2
Lo 2klqyy(cla, + X)) = Xy) + g (c(qyy *+ou + 2p)= Ap)]
P3(t)
2 e —_— 2
clagg + onl e /a9 - /Xlagy + op)
T
—e 2 ————
+c Va)149; le(x + oq¥ay )2y ] o 1192
r

43 2 — 2 2, 2
. 1 1 k
—;—[422 + 0,] Py /31411922 ;——2[(QZ2* o) (A1 + o)+ 0,425

ra
~2k /X1b;
0 (121)
0
or
+fiIBIC[qZ2 + 0:]
lim Pl(t) = (122)
te+ G
Vy.cb,/
lim P,(t) <1172 (123)
trm G
Albl 2
a IQ22 + On]
lim P (¢t) = (124)
G
te+m




where

2 2 2
G= qZ2[C(0n + Xl) - Al] + on[c(q“ "’O'n + Xl)‘ Al] (125)

To conclude we notice that under the conditions specified the added com-
plex weight w,(t) convergeson a steady state value which cancels the reference
loop phase shift ¢. By doing this we have shown that the result is the elimi-
nation of the weight cycling.

We have also shown that an increase in the interference power will make oae
of the eigenvalues more negative, thus giving a stabilizing effect to the
system. In general, we see that the array weight's counvergence rates depend on
the power as well as the relative directions of the interference and desired

signal.

V. The Uncompensated Scheme With Single Interference
i The uncompensated scheme will be considered as a special case of the com—
pensated scheme with Pp(t) = 1 and ¢¥(t) = 0, Using this in (56) and (57)

respectively we get

! de
, 1(t) + 2k(qy) + A + oﬁ)Pl(t) + 2kq,P,(t) cos(e;(t) - 8,(t))

= 2ka V] cos ¢ (126)

dp
2(¢) + 2kqy; Py (t) cos(8,(t) - 0,(t)) + 2k(qy, + ai)Pz(t) =0 (127)

Similarly (60) and (59) become

pl(c)deiit) + 2kq,P,(t) sin(e;(t) = 8,(t)) = 2ka /i sin ¢ (128)
..d
Pz(t)'g§é£1 = 2kqy P, (t) sin(e,(t) = 8,5(t)) = 0 (129)

A general solution for the differential equations of (126),(127),(128), and

(129) has not yet been found. However, for the case when the direction vector
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of the interferer and the desired signal are othogonal (i.e., <PyPg> = 0)
we can reduce the problem. For this case we get from (82), (83), and (84)
that

a1 * 921 =912 =0 (130)

2
NB
L=
22 * 5

Substituting (130) and (131) into (126), (127), (128), and (129) we get

szit) + 2k() + 02)P;(t) = 2ka /3] cos ¢ (131)
P20 | 2k(ayy + oDB(ED (133)
pl(c)dezzt) - 2ka /A7 sin ¢ (136)
pz(c)deiit) =0 (135)

From the solutfon of (133) we see that the weight yy(t) = Py(t)exp[-362(t)]
will exponentially decay to a steady state value of zero. Also we note that
(132) and (134) are the equivalent to the weight equations derived by DeCarlo
(4] for the interference free case. (n.b. equations (30) and (33) of reference
{4)). In his solution DeCarlo showed that the magnitude of the weight
(]v1(t)| = Pj(t)) would converge on a steady state value proportional to the
cosine of the phase offset ¢. However the phase of the weight (arg(y;(t))=
81(t)) will oscillate at a radian frequency proportional to the tangent
of the phase offset ¢.

To conclude we see that when the direction vector of the interference is
orthogonal to that of the desired signal, the interference will have no effect on
the system weights. And we see that the weights will approach a limit cycle in

exactly the same fashion as DiCarlo [4] predicted for the no interference case.
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VI. Conclusion

In this paper we have devised a method by which we have been able to better
study the effects of interference on the array weights of an adaptive array sys-
tem. Using this method we have further analyzed Bar-Ness's compensation scheme
{3] and have shown that for a multiple interference case the refereace loop phase
shift is effectively compensated for. We have also been able to show that for
the single interference case the array weights will coanverge on a steady-state
value. For the uncompensated Compton scheme [2] it was demonstrated that the
array weights will cycle for the special case of one interference with a direction
vector orthogonal to that of the desired signal. Future work is planned for the
study of a general solution for the multiple interference case with Bar-Ness's
Compensation Scheme as well as a general solution for the single interfernece case
with Compton's scheme. Furthermore, analysis is planned for the signal to noise

plus interference ratio of Bar-Ness's scheme in a single interference environment.
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Appendix A

The desired signal's auto correlation matrix &g is defined in (15)

as

2 2 - -ja.
o, -.‘2! I -% 1 e 102 e o
ejaz .
. . (A1)
_gja“ 1 |nxn

g is Hermetlan having rank equal to one. Therefore, a unitary matrix

exists such that Ag = Q'¢$4Q 1s a diagonal matrix with only one non zero

element. Thus

A3'0'¢3Q' XIoooQoo
0

(A2)

lo...o
(=]

Since we have used a similarity transformation to obtain A 4, we see that:

Trace[¢g] = Trace[Aq]

(A3)
Thus by inspection of (Al) and (A2) we get
Aot E%E (A4)
We can more formally define the diagonalizing matrix Q as
ol U
Q' = | ___vy' (AS)
__va

Where since ¢4 1s Hermetian, vj(i=1 to n) foram an orthonormal set of
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aﬁﬁ
eigenvectors where v) 1s the eigenvector corresponding to the one nonzero
eigenvalue of &g and
Also, v4(i=2 to N) are the eigenvectors corresponding to the N-1 zero eige-

nvalues of ¢4.

Now, turning our attention to the M interferers, we see that the autocor-

relation matrix 011(1 = 1 to M) of each interference is defined in (16) as

=3b = L7
1 e 2 e n
B12 ;
4, = = Py Py = b
L 2L ,j L, |
. . (A7) i
L] L] !
. * !
by . I
e 0 1

Each matrix 011(1 = 1 to M) is Hermetian of rank l. Thus we see that a matrix
M

defined by | 011 will also be Hermetfan and have rank ¢ M. Now leaving v;
i=1

alone so that (A2) is always satisfied we can see that the vectors vy (i = 2

to M+1) can always be made so that Vj(j = ] to M+l) will span the M-space

M
spanned by I 01‘. And, the efigenvectors vi{k = M2 to N) can be made ortho-
i=]
gonal to that M-spacs as well as the direction of v;. By doing this we can get
M
a transformation of -he matrix | @4 such that
i=1
—qi e o o .- 0
M . J.
Ap = Q' | 04Q= . . (A8)
i=] . .
- T M+l M+
0
0

where since this a similarfity transformation A must be Hermetian and there-

fore
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q14 - positive and real 1= (A9)

34 = q}i - complex 1+ (Al10)
For 1 # ] we can write 913 in the form

~Joi

43 * qu e J (A11)
where +

qij - |q1_1| (Al12)

p1y = arglqyyl (A13)
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Appendix B

From (83)

2

Substituting for v from (81)

2 Py* = <@.*, vV
a7 '%‘ |<px, L I» 17152 (82)
IPI*"<PI* ,Vl>Vl I
or
* o & * koo &
22 * 3~
|PI* - <PI*, Vl > Vll
Evaluating the demoninator
3 (B4)
[Py* = <Pp* v ov | = [<Py* <P *,v Dv , Pp* =KPr*,v v >]
= [KPy*,P1*> = <Pp*,v><v),P1%*>
- <PI*,V1>*<PI*,V1>l
+ CPy* v <A, 1T (85)
or
7
Substituting (B6) into (B3) we get
2
a9y = .:_ [<Pp*,Py*> = <" v <P av ) (87)
B2 |12
- 2—- [<PI*,PI*> - |<PI*'VI>- ] (88)
* _ &
But <P, ,P; > = N (89)
and from (82)
2 "
12’_. I<py* v 212 = qq, (810)
Thus (B8) becomes
2
99 * !g— = qy (B11)
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Appendix C

Using the definition of vy from (82) we get

* ]
PI - <PI ,V1>V1\

* *
<Py ,vo> = <P
I 72 | G * *

or
* * * * *

* <PI ,PI > - <PI ,Vl> <PI ,V1>

<PI ,V2> -

® *
|PI - <PI .Vl>vl|
Substituting for the demoninator from (B6) and using (Bl0) we get

1
* » * * * *

1

Thus from (C4) we see that (PI*.V2> will always be a real number.
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Appendix D
Substituting q)) = A2 in (111), we get after rearranging terms
(A + 2kead) [(A + 2k(Ag + 02D (A + 2k(A] + 02) + 4kBapa,)
- 4kk A ja2(A + 2k(hg + 02)) + 8kEAjask e = 0 (p1)
or
(1 + 2k ca?) (A2 + 2k(A; + Ay + 2090 + 4kZaa(A; + Ap)

2 2
+ 42(00)2] - akkaga?(r + 2kay) =0 (D2)
Factoring the first and rearranging we finally get

2 2
(A + 2ko) [(A + 2kpca®)(h + 2k(Ag + Ay + 0p)) = 4kk, A;a?] . 0
D3)
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Appendix E

We know by solving (113) that the roots of (l11) for q;; = O are uncon-
ditionally real and negative if c()A; + oi)/xl > l. Thus under this condi-
tion the root loci of (111) has 3 poles and one zero all on the negative real
axis. We are only interested in the roots for 0 < qj; < A7 and we realize from
(114) that the roots of (111) as q)] approaches i, will be unconditionally
real and negative under the previous specified condition. Below are the 4
possible paths which the root loci of (111) can follow according to the above

specifications

4@; ————-

N O—— D S¢————

%> X
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. where the arrows point in the direction of increasing q;;. The poles for qj; = 0
| are defined by the roots of (113) and from (111) the zero is at -Zkraz(c - 1).
Obviously since we see from the above root loci that if for the maximum
value of qj) = A2 the roots of (111) are negative and real so that for any value
of q1) < A2 the root must always have a negative real part.
As an example let's assume the following values
c= 1.2 k = 50 oi = ,001
a = 8,33 kr = 25
b=1.6262 2 =1 A2 = 1/2
From (113) the equation for the roots when q;; = 0 1is:
(A =50.1)[(x + 4166.33)(x + 100.1) - 347,194.45] (El)
which has roots at
A = =50, -16.4, -4249.9

Notice also that the zero for this root locli is found from (111) to be -694.43.

] As we increase qj) to A2 = 1/2 from (114) we get roots at A = -.1, -65.4, -4251. r

' The root loci is plotted as

-4249.9 -694.43 -50 -16.4 9,0 &

Voo .

—eE =

‘i ‘i ?

-4251 -65.4 -0.1

Qr’ % ]

L. P

Notice from (113) and (El) that an increase in interference power will only

affect the eigenvalue at A = =50, In fact an increase in power will cause

this eigenvalue to become more negative, thus helping to stabilize the system.

i
.
'
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List of Symbols - Appendix F

A desired signal's amplitude

a constant dependent on the limiter level and filter attenuation of the

reference extraction loop

By gth interference amplitude

by compensation scheme limiter level

bij phase of the 1th jnterference at the jth element
c compensation loop weighting factor

d(e) reference signal

E[ ] denotes expected value

e(t) error signal for array LMS algorithm

e)(t) error signal of compensation scheme

k gain constant for LMS algorithm in array weights
ke gain constant for LMS algorithm in compensation loop
Ly distance between 1°% and jth antenns element
i M number of interferers
N number of array elements
: P1(t) magnitude of linear transformed array weights
i P11T 1t fnrerference incoming phase vector (1 x N)
% Pe(t) magnitude of the complex compensation weight w.(t)
PST desired signal's phase vector (1 x N) |
| Q diagonalizing matrix {N x N] :
G913 components of Ay
4 q+1J magnitude of 93
? Ry input signal autocorrelation matrix
i Ryd input-reference signal cross-correlation matrix
4 t denotes transpose
i (Continued)
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vy
wi(t)
w(t)
wp(t)
xT(¢)
xg7(t)
x3q(t)

y(t)

i |
rT(e)

A£1

Ax

List of Symbols - Appena.x .
(Continued)

eigenvectors of &g used as vector components of Q
couplex antenna element weight vector (1 x N)
components of wi(t) corresponding to the gth complex array weight
complex reference extraction loop compensation weight

system's input vector (1 x N)

inphase component of the 1th

array element input
quadrature component of the 1th array element input

input to the compensation scheme

phase of desired signal at the jth element

Q'w(t)

uncoupled complex array weight vector (1 x N)

components of PT(t) corresponding to the 1th complex transformed
array weight

phase of linear transformed array weight

Q' o5 Q

diagonalized desired signal's autocorrelation matrix (N x N)
M

1 Q ergQ

i=]

sum of the diagonalized interference signals autocorrelation
matrices (N x N)

NaZ/2 ; only nozero component of As

NB2/2 ; trace of AI

angle of the complex value 94

phase shift introduced by uncompensated reference signal loop
1*R jnterference autocorrelation matrix (N x N)

desired signal's autocorrelation matrix (N x N)

phase of the complex compensation weight w t

(Continued)
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List of Symbols - Appendix F
(Continued)

| denotes magnitude
< > denotes inner produce i
* denotes conjugate |

denotes transponse conjugate |
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